Skip to main content

DIG: Dive into Graphs is a turnkey library for graph deep learning research.

Project description

logo

PyPI Version Docs Status Build Status codecov Last Commit Contributing License visitors Downloads

Documentation | Paper [JMLR] | Tutorials | Benchmarks | Examples | Join the DIG slack community now!:fire:

DIG: Dive into Graphs is a turnkey library for graph deep learning research.

:fire:Update (2022/07): We have upgraded our DIG library based on PyG 2.0.0. We recommend installing our latest version.

Why DIG?

The key difference with current graph deep learning libraries, such as PyTorch Geometric (PyG) and Deep Graph Library (DGL), is that, while PyG and DGL support basic graph deep learning operations, DIG provides a unified testbed for higher level, research-oriented graph deep learning tasks, such as graph generation, self-supervised learning, explainability, 3D graphs, and graph out-of-distribution.

If you are working or plan to work on research in graph deep learning, DIG enables you to develop your own methods within our extensible framework, and compare with current baseline methods using common datasets and evaluation metrics without extra efforts.

Overview

It includes unified implementations of data interfaces, common algorithms, and evaluation metrics for several advanced tasks. Our goal is to enable researchers to easily implement and benchmark algorithms. Currently, we consider the following research directions.

  • Graph Generation: dig.ggraph
  • Self-supervised Learning on Graphs: dig.sslgraph
  • Explainability of Graph Neural Networks: dig.xgraph
  • Deep Learning on 3D Graphs: dig.threedgraph
  • Graph OOD: dig.oodgraph

logo

Usage

Example: a few lines of code to run SphereNet on QM9 to incorporate 3D information of molecules.

from dig.threedgraph.dataset import QM93D
from dig.threedgraph.method import SphereNet
from dig.threedgraph.evaluation import ThreeDEvaluator
from dig.threedgraph.method import run

# Load the dataset and split
dataset = QM93D(root='dataset/')
target = 'U0'
dataset.data.y = dataset.data[target]
split_idx = dataset.get_idx_split(len(dataset.data.y), train_size=110000, valid_size=10000, seed=42)
train_dataset, valid_dataset, test_dataset = dataset[split_idx['train']], dataset[split_idx['valid']], dataset[split_idx['test']]

# Define model, loss, and evaluation
model = SphereNet(energy_and_force=False, cutoff=5.0, num_layers=4,
                  hidden_channels=128, out_channels=1, int_emb_size=64,
                  basis_emb_size_dist=8, basis_emb_size_angle=8, basis_emb_size_torsion=8, out_emb_channels=256,
                  num_spherical=3, num_radial=6, envelope_exponent=5,
                  num_before_skip=1, num_after_skip=2, num_output_layers=3)                 
loss_func = torch.nn.L1Loss()
evaluation = ThreeDEvaluator()

# Train and evaluate
run3d = run()
run3d.run(device, train_dataset, valid_dataset, test_dataset, model, loss_func, evaluation,
          epochs=20, batch_size=32, vt_batch_size=32, lr=0.0005, lr_decay_factor=0.5, lr_decay_step_size=15)
  1. For details of all included APIs, please refer to the documentation.
  2. We provide a hands-on tutorial for each direction to help you to get started with DIG: Graph Generation, Self-supervised Learning on Graphs, Explainability of Graph Neural Networks, Deep Learning on 3D Graphs, Graph OOD (GOOD) datasets.
  3. We also provide examples to use APIs provided in DIG. You can get started with your interested directions by clicking the following links.

Installation

Install from pip

The key dependencies of DIG: Dive into Graphs are PyTorch (>=1.10.0), PyTorch Geometric (>=2.0.0), and RDKit.

  1. Install PyTorch (>=1.10.0)
$ python -c "import torch; print(torch.__version__)"
>>> 1.10.0
  1. Install PyG (>=2.0.0)
$ python -c "import torch_geometric; print(torch_geometric.__version__)"
>>> 2.0.0
  1. Install DIG: Dive into Graphs.
pip install dive-into-graphs

After installation, you can check the version. You have successfully installed DIG: Dive into Graphs if no error occurs.

$ python
>>> from dig.version import __version__
>>> print(__version__)

Install from source

If you want to try the latest features that have not been released yet, you can install dig from source.

git clone https://github.com/divelab/DIG.git
cd DIG
pip install .

Contributing

We welcome any forms of contributions, such as reporting bugs and adding new features. Please refer to our contributing guidelines for details.

Citing DIG

Please cite our paper if you find DIG useful in your work:

@article{JMLR:v22:21-0343,
  author  = {Meng Liu and Youzhi Luo and Limei Wang and Yaochen Xie and Hao Yuan and Shurui Gui and Haiyang Yu and Zhao Xu and Jingtun Zhang and Yi Liu and Keqiang Yan and Haoran Liu and Cong Fu and Bora M Oztekin and Xuan Zhang and Shuiwang Ji},
  title   = {{DIG}: A Turnkey Library for Diving into Graph Deep Learning Research},
  journal = {Journal of Machine Learning Research},
  year    = {2021},
  volume  = {22},
  number  = {240},
  pages   = {1-9},
  url     = {http://jmlr.org/papers/v22/21-0343.html}
}

The Team

DIG: Dive into Graphs is developed by DIVE@TAMU. Contributors are Meng Liu*, Youzhi Luo*, Limei Wang*, Yaochen Xie*, Hao Yuan*, Shurui Gui*, Haiyang Yu*, Zhao Xu, Jingtun Zhang, Yi Liu, Keqiang Yan, Haoran Liu, Cong Fu, Bora Oztekin, Xuan Zhang, and Shuiwang Ji.

Contact

If you have any technical questions, please submit new issues or raise it in our DIG slack community:fire:.

If you have any other questions, please contact us: Meng Liu [mengliu@tamu.edu] and Shuiwang Ji [sji@tamu.edu].

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dive_into_graphs-1.1.0.tar.gz (4.1 MB view details)

Uploaded Source

Built Distribution

dive_into_graphs-1.1.0-py3-none-any.whl (4.2 MB view details)

Uploaded Python 3

File details

Details for the file dive_into_graphs-1.1.0.tar.gz.

File metadata

  • Download URL: dive_into_graphs-1.1.0.tar.gz
  • Upload date:
  • Size: 4.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.9

File hashes

Hashes for dive_into_graphs-1.1.0.tar.gz
Algorithm Hash digest
SHA256 46e39e4773a6dc2725c6b6159122a4e4d19d6a6f55111e002546dcd3ff0d364d
MD5 24a0dc7ca0a30336c8ac073108a7d965
BLAKE2b-256 f727ffa6c58d56d589b38fec25ad3b9b2f030e4003d0d0ad61d0383b07a95eb7

See more details on using hashes here.

File details

Details for the file dive_into_graphs-1.1.0-py3-none-any.whl.

File metadata

File hashes

Hashes for dive_into_graphs-1.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 9792285a2da9babb2b4f523bc4a106ea8c6e9d4f43c12fad04072764af0f3988
MD5 0fd4d59485b0295ca0739e9fd9b431ee
BLAKE2b-256 d31d4f34fcf5d3b135200febfb1cc6772921910420de6da3d19c9eecb66486bd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page