Django app facilitating tracking of arbitrary simple metrics.
Project description
A basic Django app facilitating tracking of certain elementary metrics and statistics - generally just metrics which can be measured in terms of counts and cumulative counts.
This app could be useful for keeping track of registrations, page impressions, sessions, and so on. By default, it allows for tracking of registrations. Adding more metrics is a relatively straightforward task, as explained further on.
Quick Installation
Save a copy of the django-analytics app in your Python path.
Add it to your INSTALLED_APPS list in your Django project settings.
Create a mod_analytics.py file for each of your apps that require some sort of tracking. See the Creating a mod_analytics Script section below.
Run the following from the command line in order to install the various metrics and automatically make them active:
> python manage.py metrics --install
Run the following from the command line to update the daily, weekly and monthly statistics for each of the active metrics:
> python manage.py metrics --calculate=ALL
By default, django-analytics comes with a registrations metric which counts the number of users in the system based on their date_joined timestamp.
Creating a mod_analytics Script
If, for example, you have an app called comments with the following models.py file:
from django.db import models from django.contrib.auth.models import User class Comment(models.Model): user = models.ForeignKey(User, related_name='comments') timestamp = models.DateTimeField(auto_now_add=True) comment = models.CharField(max_length=300)
and you would like to track the total number of comments, you could create a mod_analytics.py script (in the same directory as your app’s models) looking like the following:
from analytics.basemetric import BaseMetric from models import Comment class TotalComments(BaseMetric): uid = "totalcomments" title = "Total comments" def calculate(self, start_datetime, end_datetime): return Comment.objects.filter(timestamp__gte=start_datetime, timestamp__lt=end_datetime).count() def get_earliest_timestamp(self): try: return Comment.objects.all().order_by('timestamp')[0].timestamp except IndexError: return None
Geckoboard Integration and CSV Dumps
In order to allow for Geckoboard integration to allow for visualisation of your statistics, as well as simple CSV dumping of statistics, in your project’s urls.py, add the following line:
urlpatterns = patterns('', # ... (r'^analytics/', include('analytics.urls')), # ... )
Note that this project makes use of django-geckoboard (http://pypi.python.org/pypi/django-geckoboard), so all of the default django-geckoboard settings apply.
Geckboard Charts
This will automatically add the following Geckoboard-related URLs to your project:
- analytics/geckoboard/numbers
A numbers widget. Supported GET variable parameters: uid, daysback, cumulative, frequency. daysback default: 7.
- analytics/geckoboard/rag
A RAG widget. Supported GET variable parameters: uids, daysback, cumulative, frequency.
- analytics/geckoboard/pie
A pie chart widget. Supported GET variable parameters: uids, daysback, cumulative, frequency.
- analytics/geckoboard/line
A line chart widget. Note that this can only plot a single metric per chart. Supported GET variable parameters: uid, daysback, cumulative, frequency. daysback default: 7.
- analytics/geckoboard/geckometer
A geck-o-meter widget. Supported GET variable parameters: uid, frequency, cumulative, min, max.
- analytics/geckoboard/funnel
A funnel chart widget. Supported GET variable parameters: uids, frequency, cumulative, type, percentage, sort.
Geckoboard GET Variable Parameters
uid |
The UID of the metric to display, if a single metric is to be displayed. |
uids |
The UIDs of the metrics to display, if multiple metrics are to be displayed. |
daysback |
The numbers Geckoboard widget shows a single count, and the percentage change from a previous count. This view returns the most recent count or cumulative count, as well as the count or cumulative count from days_back days ago. |
cumulative |
A boolean value (either t or f) indicating whether the period count is to be returned, or the cumulative count. Default: t. |
frequency |
The frequency of the statistics to be returned. Can be d, w or m for daily, weekly or monthly, respectively. Default: d. |
min |
The minimum value of a particular metric - usually for pie charts. Default: 0. |
max |
The maximum value of a particular metric - usually for pie charts. Default: 100. |
type |
Chart type - only applicable to the funnel chart. See the Geckoboard API for more details. Default: standard. |
percentage |
Whether or not to show a percentage - only applicable to the funnel chart. See the Geckoboard API for more details. Default: show. |
sort |
A boolean value (either t or f) indicating whether or not to sort the statistics - only applicable to the funnel chart. See the Geckoboard API for more details. Default: f. |
CSV Dump
It will also add the following CSV-related URLs to your project:
- analytics/csv/<uid>
A simple view requiring the UID of the metric as its parameter, returning a CSV dump of all of the statistics for the given metric. By default, this returns the daily statistics for the metric.
CSV Dump GET Variable Parameters
frequency |
The frequency of the statistics to be returned. Can be d, w or m for daily, weekly or monthly, respectively. Default: d. For example, analytics/csv/registrations?frequency=w will return all of the weekly registrations over all time as a CSV dump. |
Metrics Explained
The django-analytics module creates Metric objects for each type of metric that needs to be tracked, such as registrations, page impressions, etc. Each metric needs to have a globally unique identifier (UID) so that it can be referenced from the command line by name, and a title to provide a little more of a description of what that metric is.
Each metric has a number of Statistic objects associated with it, each Statistic only being a simple combination of date/time, a count for that date/time, a cumulative count, and frequency.
The frequency can currently only be daily, weekly or monthly, and by default, each metric’s statistics are calculated for all of those frequencies (so a single metric can have multiple frequencies’ statistics).
In general, the cumulative count is automatically calculated for you, and is simply the previous day’s/week’s/month’s cumulative count, added to the current day’s/week’s/month’s count.
Command Line Reference
The following options are available from the command line for the metrics management command:
- -l, --list
Lists all of the available metrics, along with some basic information about each.
- -i, --install
Scans the project for available metrics and creates or updates them where necessary.
- -a, --activate
Activates the metric with the specified UID, e.g. --activate=registrations. If you want to activate all metrics, simply specify --activate=ALL on the command line. Only active metrics will be included in a --calculate=ALL execution.
- -d, --deactivate
Deactivates the metric with the specified UID. Again, you can specify --deactivate=ALL to deactivate all metrics.
- -c, --calculate
Calculates the specified metric, e.g. --calculate=registrations. Can specify --calculate=ALL to calculate all active metrics.
- -f, --frequency
If the --calculate command is specified, this will allow one to force a particular frequency’s statistics to be calculated. Possible values are: d (daily), w (weekly), m (monthly) and a (all). Default is all.
- --reset
Deletes all of the Statistic objects associated with the specified metric. Can specify --reset=ALL to delete all statistics for all metrics, regardless of whether they are active or not.
- --drop-metric
Deletes the actual Metric with the specified UID. Use --drop-metric=ALL to drop all metrics (and their statistics) from the database.
Inner Workings
When running the manage.py metrics --install command, the following happens:
The script searches through all the installed apps for your project and attempts to first find a mod_analytics module which it can import.
It then searches through all of the classes in each mod_analytics module it encounters, and then attempts to find classes derived from the analytics.basemetric.BaseMetric class (an abstract class).
For each valid class found which derives from the BaseMetric class, the script makes sure it has two functions: calculate, and get_earliest_timestamp. It also makes sure the class has two properties: uid and title.
If the class has these two functions, the script creates a Metric instance whose unique identifier and title are set to the uid and title values of the discovered class.
The calculate function takes two parameters: start_datetime and end_datetime, and must simply return a count of the relevant metric between those two given dates. You can perform any calculations you need in this function to get to this final count value.
To understand the reasoning here, the analytics app has three broad calculation time periods which it attempts to calculate: daily, weekly and monthly. For a daily calculation, for example, the start_datetime parameter supplied will resemble something like datetime(2011, 5, 1) and the end_datetime parameter will resemble something like datetime(2011, 5, 2). The calculate function must then return a count of the relevant metric for the time period starting at 2011/05/01 00:00 and ending at 2011/05/02 00:00. NOTE: You should always return counts starting at exactly the given start_datetime value (i.e. greater-than-equal-to), but just before the end_datetime value (i.e. less-than).
The get_earliest_timestamp function must simply return a datetime.datetime object indicating the earliest data’s associated date/time, so that the analytics calculation routine knows the date at which to start calculating. If there are no entries yet, this function must return None.
Abstract Metrics
If you want to create abstract metrics, simply create a separate Python file somewhere which will contain your “abstract” metrics. For example, create an abstract_metrics.py file which looks as follows:
from analytics import BaseMetric from django.contrib.auth.models import User class UserBaseMetric(BaseMetric): def calculate(self, start_datetime, end_datetime): return User.objects.filter(date_joined__gte=start_datetime, date_joined__lt=end_datetime).count() def get_earliest_timestamp(self): try: return User.objects.all().order_by('date_joined')[0].date_joined except IndexError: return None
Then, in your mod_analytics.py file, just import your abstract_metrics module. Note: Do not import the UserBaseMetric, just import the abstract_metrics module, as follows:
from analytics import BaseMetric import myapp.abstract_metrics class UserMetric(abstract_metrics.UserBaseMetric): uid = "users" title = "Users"
Todo
The following features are planned for future versions of django-analytics:
Custom visualisation integrated into Django admin back-end.
Hourly statistics.
More complex statistics, such as frequency plots/histograms.
Version History
Version |
Description |
---|---|
0.0.1 |
First version |
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file django-analytics-0.0.1.tar.gz
.
File metadata
- Download URL: django-analytics-0.0.1.tar.gz
- Upload date:
- Size: 15.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e2aa62c0a8671dc8559d11d56cd526f97b5566fbe41b4f1327adae947d8412e6 |
|
MD5 | 8f4654b7add1f480e34b164ac15afa25 |
|
BLAKE2b-256 | 13205514586a8dbecc3eeb08b99132c293fabb034a954c3048817befe7adc753 |
File details
Details for the file django_analytics-0.0.1-py2.7.egg
.
File metadata
- Download URL: django_analytics-0.0.1-py2.7.egg
- Upload date:
- Size: 34.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 62e08ecab07d33c4fbc15d69a588f7d525dfce743283b1e61ddf8b514842f6af |
|
MD5 | 8c750edb86b0a7bf5d87cf1ebd3bf91d |
|
BLAKE2b-256 | 4b40a2d745752639d140c04a9526526ca5f63e062be9690f0c310c94d992a456 |