Skip to main content

Background tasks using django's cache framework.

Project description

Background tasks using django’s cache framework.

Quickstart

Install django-cacheq:

pip install django-cacheq

Requirements

  • django>=1.5.1

  • jsonfield>=1.0.3

  • lockfile>=0.10.2

Add it to your installed apps:

INSTALLED_APPS = (
    ...
    'cacheq',
)

And that’s it with setup. You can add some basic settings too, but they are not really required.:

CACHES = {
    'default: ...,
    'cacheq': ...,
    'other': ...
}

CACHEQ = {
    'CACHE': 'cacheq',                      # which cache to use, defaults to 'default'
                                            # note that dummybackend is *not* supported
    'LOCKFILE': '/var/tmp/mycacheq.lock',   # lock file to use if cache is filebased,
                                            # defaults to '/var/tmp/cacheq.lock'
    # these settings are only for testing
    'MEMCACHED_TESTS_USING': 'memcached',   # which cache to use for running memcached
                                            # backend tests, only for development
    'REDIS_TESTS_USING': 'redis',           # which cache to use for running redis
                                            # backend tests, only for development
}

Then use it in your project:

import operator
from cacheq import CacheQ

cq = CacheQ(name='myqueue', using='cacheq') # as in get_cache('cacheq')

# either enqueue one job
job = cq.enqueue(operator.add, 1, 2)

# or several at a time. note that both the args=[...] and kwargs={...}
# arguments are required in this case, even if empty
tasks = [(operator.add, [1,2], {}), (operator.div, [], {'a': 2, 'b': 2})]
job = cq.enqueue_many(tasks) # job with many tasks

# or you can use the @cq.job decorator
@cq.job
def myfunc(a,b):
    return a+b

job = myfunc.delay(1,b=2)

# then wait for results
job.ready() # False
job.ready() # True
job.result # 3

# calling job.ready() or job.result will not hit the database
# it will look for result and status in cache. once it's ready
# it will update job in database.

Running the worker:

python manage.py cqworker --using=cacheq --queue=myqueue --name=worker123 --pulse=0.1

This will run a cqworker with name “worker123” in foreground listening to queue “myqueue” using the cache backend under get_cache(‘cacheq’). The ‘pulse’ option is not really necessary, but it will accept any value between 0.0 and 1.0, which will be the time that the worker will wait to look for a new job again. I don’t know if this is really helpful, as it would still be only one connection to memcached / redis, and time.sleep is blocking.

These are the default values

  • using: ‘default’

  • queue: ‘default’

  • name: ‘worker’

  • pulse: 1.0

When running tests it’s helpful to run the worker and exit when jobs are done. You can do this by either calling the cqworker command with the –burst option or by using the worker.run method.:

python manage.py cqworker --using=cacheq --queue=myqueue --burst

# or programatically
from cacheq import get_worker

worker = get_worker(queue_name='myqueue', using='cacheq')
worker.run(burst=True)

django-cacheq uses django ORM as a backend for job results. This is only something that fitted specific needs I had at the time I wrote this package, but I guess it would be wise to remove it at some point and replace it by a cache backend too, or maybe adding a setting that allows other database to be used specifically as a results backend.

Anyways, for now you can clear jobs by using the cqclear command:

python manage.py cqclear <done failed pending all> [--no-input]

In the case you want to delete pending jobs, you will have to confirm the action if you do not provide the –no-input option. So have this in mind if you wish to use a cronjob to clear jobs periodically.

History

0.1.0 (2015-07-25)

  • First release on PyPI.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

django-cacheq-0.1.1.tar.gz (14.0 kB view details)

Uploaded Source

File details

Details for the file django-cacheq-0.1.1.tar.gz.

File metadata

File hashes

Hashes for django-cacheq-0.1.1.tar.gz
Algorithm Hash digest
SHA256 33ed8a7b2f5d9511a24e5400c91d7ebe3f67db160354ccd19fedac7daa3dcc06
MD5 6558ba82c1b82edf92a681b51ad644a2
BLAKE2b-256 8fbb70ff73a0bbaa67fb67e7057a91d834badfe84add6445bfdb8ed783f1a004

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page