Skip to main content

Bringing component based design to Django templates.

Project description

Django Cotton Logo

Django Cotton

PyPI PyPI - Downloads

Bringing component-based design to Django templates.

Contents

Why?
Install
Usage Basics
Your First component
Attributes
Named Slots
Pass Template Variables
Template expressions in attributes
Boolean attributes
Passing Python data types
Increase Re-usability with {{ attrs }}
In-component Variables with <c-vars>
HTMX Example
Limitations in Django that Cotton overcomes
Caching
Version support Changelog
Comparison with other packages

Why Cotton?

Cotton aims to overcome certain limitations that exist in the django template system that hold us back when we want to apply modern practices to compose UIs in a modular and reusable way.

Key Features

  • Modern UI Composition: Efficiently compose and reuse UI components.
  • Interoperable with Django: Cotton only enhances django's existing template system (no Jinja needed).
  • HTML-like Syntax: Better code editor support and productivity as component tags are similar to html tags.
  • Minimal Overhead: Compiles to native Django components with dynamic caching.
  • Encapsulates UI: Keep layout, design and interaction in one file (especially when paired with Tailwind and Alpine.js)
  • Compliments HTMX: Create smart components, reducing repetition and enhancing maintainability.

Install

pip install django-cotton

settings.py

INSTALLED_APPS = [
    'django_cotton'
]

If you have previously specified a custom loader, you should perform manual setup.

Usage Basics

  • Component Placement: Components should be placed in the templates/cotton folder (or define a custom folder).
  • Naming Conventions:
    • Component filenames use snake_case: my_component.html
    • Components are called using kebab-case prefixed by 'c-': <c-my-component />

Walkthrough

Your first component

<!-- cotton/button.html -->
<a href="/" class="...">{{ slot }}</a>
<!-- in view -->
<c-button>Contact</c-button>
<!-- html output -->
<a href="/" class="...">Contact</a>

Everything provided between the opening and closing tag is provided to the component as {{ slot }}. It can contain any content, HTML or Django template expression.

Add attributes

<!-- cotton/button.html -->
<a href="{{ url }}" class="...">
    {{ slot }}
</a>
<!-- in view -->
<c-button url="/contact">Contact</c-button>
<!-- html output -->
<a href="/contact" class="...">
    Contact
</a>

Named slots

Named slots are a powerful concept. They allow us to provide HTML to appear in one or more areas in the component. Here we allow the button to optionally display an svg icon:

<!-- cotton/button.html -->
<a href="{{ url }}" class="...">
    {{ slot }}
  
    {% if icon %} 
        {{ icon }} 
    {% endif %}
</a>
<!-- in view -->
<c-button url="/contact">
    Contact
    <c-slot name="icon">
        <svg>...</svg>
    </c-slot>
</c-button>

Named slots can also contain any django native template logic:

<!-- in view -->
<c-button url="/contact">
    <c-slot name="icon">
      {% if mode == 'edit' %}
          <svg id="pencil">...</svg>
      {% else %}
          <svg id="disk">...</svg>
      {% endif %}
    </c-slot>
</c-button>

Pass template variable as an attribute

To pass a template variable you prepend the attribute name with a colon :. Consider a bio card component:

<!-- in view -->
<c-bio-card :user="user" />

That has a component definition like:

<!-- cotton/bio_card.html -->
<div class="...">
  <img src="{{ user.avatar }}" alt="...">
  {{ user.username }} {{ user.country_code }}
</div>

Template expressions inside attributes

You can use template expression statements inside attributes.

<c-weather icon="fa-{{ icon }}"
           unit="{{ unit|default:'c' }}"
           condition="very {% get_intensity %}"
/>

Boolean attributes

Boolean attributes reduce boilerplate when we just want to indicate a certain attribute should be True or not.

<!-- in view -->
<c-button url="/contact" external>Contact</c-button>

By passing just the attribute name without a value, it will automatically be provided to the component as True

<!-- cotton/button.html -->
<a href="{{ url }}" {% if external %} target="_blank" {% endif %} class="...">
    {{ slot }}
</a>

Passing Python data types

Using the ':' to prefix an attribute tells Cotton we're passing a dynamic type down. We already know we can use this to send a variable, but you can also send basic python types, namely:

  • Integers and Floats
  • None, True and False
  • Lists
  • Dictionaries

This benefits a number of use-cases, for example if you have a select component that you want to provide the possible options from the parent:

<!-- cotton/select.html -->
<select {{ attrs }}>
    {% for option in options %}
        <option value="{{ option }}">{{ option }}</option>
    {% endfor %}
</select>
<c-select name="q1" :options="['yes', 'no', 'maybe']" />
<!-- source code output -->
<select name="q1">
    <option value="yes">yes</option>
    <option value="no">no</option>
    <option value="maybe">maybe</option>
</select>

Increase Re-usability with {{ attrs }}

{{ attrs }} is a special variable that contains all the attributes passed to the component in an key="value" format. This is useful when you want to pass all attributes to a child element without having to explicitly define them in the component template. For example, you have inputs that can have any number of attributes defined:

<!-- cotton/input.html -->
<input type="text" class="..." {{ attrs }} />
<!-- example usage -->
<c-input placeholder="Enter your name" />
<c-input name="country" id="country" value="Japan" required />
<!-- html output -->
<input type="text" class="..." placeholder="Enter your name" />
<input type="text" class="..." name="country" id="country" value="Japan" required />

In-component Variables with <c-vars>

Django templates adhere quite strictly to the MVC model and does not permit a lot of data manipulation in views. Fair enough, but what if we want to handle data for the purpose of UI state only? Having presentation related variables defined in the back is overkill and can quickly lead to higher maintenance cost and loses encapsulation of the component. Cotton allows you define in-component variables for the following reasons:

1. Using <c-vars> for default attributes

In this example we have a button component with a default "theme" but it can be overridden.

<!-- cotton/button.html -->
<c-vars theme="bg-purple-500" />

<a href="..." class="{{ theme }}">
    {{ slot }}
</a>
<!-- in view -->
<c-button>I'm a purple button</c-button>
<!-- html output -->
<a href="..." class="bg-purple-500">
    I'm a purple button
</a>

Now we have a default theme for our button, but it is overridable:

<!-- in view -->
<c-button theme="bg-green-500">But I'm green</c-button>
<!-- html output -->
<a href="..." class="bg-green-500">
    But I'm green
</a>

2. Using <c-vars> to govern {{ attrs }}

Using {{ attrs }} to pass all attributes from parent scope onto an element in the component, you'll sometimes want to provide additional properties to the component which are not intended to be an attributes. In this case you can declare them in <c-vars /> and it will prevent it from being in {{ attrs }}

Take this example where we want to provide any number of attributes to an input but also an icon setting which is not intened to be an attribute on <input>:

<!-- in view -->
<c-input type="password" id="password" icon="padlock" />
<!-- cotton/input.html -->
<c-vars icon />

<img src="icons/{{ icon }}.png" />

<input {{ attrs }} />

Input will have all attributes provided apart from the icon:

<input type="password" id="password" />

Dynamic Components

Sometimes there is a need to include a component dynamically, for example, you are looping through some data and the type of component is defined within a variable.

<!--
form_fields = [
  {'type': 'text'},
  {'type': 'textarea'},
  {'type': 'checkbox'}  
]
-->

{% for field in form_fields %}
    <c-component :is="field.type" />
{% endfor %}

You can also provide a template expression, should the component be inside a subdirectory or have a prefix:

{% for field in form_fields %}
    <!-- subfolder -->
    <c-component is="form-fields.{{ field.type }}" />

    <!-- component prefix -->
    <c-component is="field_{{ field.type }}" />
{% endfor %}

An example with HTMX

Cotton helps carve out re-usable components, here we show how to make a re-usable form, reducing code repetition and improving maintainability:

<!-- cotton/form.html -->
<div id="result" class="..."></div>

<form {{ attrs }} hx-target="#result" hx-swap="outerHTML">
    {{ slot }}
    <button type="submit">Submit</button>
</form>
<!-- in view -->
<c-form hx-post="/contact">
    <input type="text" name="name" placeholder="Name" />
    <input type="text" name="email" placeholder="Email" />
    <input type="checkbox" name="signup" />
</c-form>

<c-form hx-post="/buy">
    <input type="text" name="type" />
    <input type="text" name="quantity" />
</c-form>

Limitations in Django that Cotton overcomes

Whilst you can build frontends with Django’s native tags, there are a few things that hold us back when we want to apply modern practices:

{% block %} and {% extends %}

This system strongly couples child and parent templates making it hard to create a truly re-usable component that can be used in places without it having a related base template.

What about {% include %} ?

Modern libraries allow components to be highly configurable, whether it’s by attributes, passing variables, passing HTML with default and named slots. {% include %} tags, whilst they have the ability to pass simple variables and text, they will not allow you to easily send HTML blocks with template expressions let alone other niceties such as boolean attributes, named slots etc.

What's with {% with %}?

Whilst {% with %} tags allow us to provide variables and strings it quickly busies up your code and has the same limitations about passing more complex types.

Custom {% templatetags %}

Cotton does essentially compile down to templatetags but there is some extra work it performs above it to help with scoping and auto-managing keys which will be difficult to manage manually in complex nested structures.

[Source article]

Native Django template tags vs Cotton

In addition, Cotton enables you to navigate around some of the limitations with Django's native tags and template language:

HTML in attributes

Django native:

{% my_component header="<h1>Header</h1>" %}

Cotton:

<c-my-component>
    <c-slot name="header">
        <h1>Header</h1>
    </c-slot>
</c-my-component>

Template expressions in attributes

Django native:

{% my_component model="todos.{{ index }}.name" extra="{% get_extra %}" %}

Cotton:

<c-my-component model="todos.{{ index }}.name" extra="{% get_extra %} />

Pass simple python types

Django native:

{% my_component default_options="['yes', 'no', 'maybe']" %}
{% my_component config="{'open': True}" %}

Cotton:

<c-my-component :default_options="['yes', 'no', 'maybe']" />
<c-my-component :config="{'open': True}" />

(provides a List and Dict to component)

Multi-line definitions

Django native:

{% my_component
    arg=1 %}

Cotton:

<c-my-component
    class="blue"
    x-data="{
        something: 1
    }" />

Dynamic components

Django native:

{% {{ templatetag_name }} arg=1 %}

Cotton:

<c-component :is="component_name" />
<c-component is="{{ component_name }}" />
<c-component is="subfolder1.subfolder2.{{ component_name }}" />

Caching

Cotton is optimal when used with Django's cached.Loader. If you use automatic configuration then the cached loader will be automatically applied. This feature has room for improvement, some desirables are:

  • Integration with a cache backend to survive runtime restarts / deployments.
  • Cache warming

For full docs and demos, checkout django-cotton.com

Version Support

  • Python >= 3.8
  • Django >4.2,<5.2

Changelog

See releases

Comparison with other packages

Feature Cotton django-components Slippers
Intro UI-focused, expressive syntax Holistic solution with backend logic Enhances DTL for reusable components
Definition of ‘component’ An HTML template A backend class with template An HTML template
Syntax Style HTML-like Django Template Tags Django Template Tags with custom tags
One-step package install
Create component in one step?
(place in folder)

(Technically yes with single-file components)

(need to register in YAML file or with function)
Slots
Pass HTML content between tags
Named Slots
Designate a slot in the component template
✅ (using ‘fragments’)
Dynamic Components
Dynamically render components based on a variable or expression
Scoped Slots
Reference component context in parent template
Dynamic Attributes
Pass string literals of basic Python types
Boolean Attributes
Pass valueless attributes as True
Implicit Attribute Passing
Pass all defined attributes to an element
Django Template Expressions in Attribute Values
Use template expressions in attribute values
Attribute Merging
Replace existing attributes with component attributes
Multi-line Component Tags
Write component tags over multiple lines

Notes:

  • Some features here can be resolved with 3rd party plugins, for example for expressions, you can use something like django-expr package. So the list focus on comparison of core feature of that library.
  • This comparison was created due to multiple requests

Project details


Release history Release notifications | RSS feed

This version

1.3.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

django_cotton-1.3.0.tar.gz (20.9 kB view details)

Uploaded Source

Built Distribution

django_cotton-1.3.0-py3-none-any.whl (20.1 kB view details)

Uploaded Python 3

File details

Details for the file django_cotton-1.3.0.tar.gz.

File metadata

  • Download URL: django_cotton-1.3.0.tar.gz
  • Upload date:
  • Size: 20.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.4 CPython/3.11.0 Linux/6.5.0-1025-azure

File hashes

Hashes for django_cotton-1.3.0.tar.gz
Algorithm Hash digest
SHA256 8f4a15dd55c8ee9182cf7234c228ea45d9fcdec1de125221bce8d05af035730a
MD5 82edc74fe0ac62798772313965a2b577
BLAKE2b-256 ba6f59a3da4823c5ffefc96afc38c69839897b62a9e3c3b6201fc61d81edcf3d

See more details on using hashes here.

File details

Details for the file django_cotton-1.3.0-py3-none-any.whl.

File metadata

  • Download URL: django_cotton-1.3.0-py3-none-any.whl
  • Upload date:
  • Size: 20.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.4 CPython/3.11.0 Linux/6.5.0-1025-azure

File hashes

Hashes for django_cotton-1.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 a23f29b759c43423e2f901352c0810388839cc412f6985614153c6ccfcfc2595
MD5 bf6d2d64966f17188f9330961672d90a
BLAKE2b-256 dc813216a0e2c7581948d249253e34e89c4716283a5371a804c21aab060db725

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page