Skip to main content

Add encrypted field classes and more to your Django models.

Project description

pypi travis codecov downloads Maintainability Code Style

django-crypto-fields

Python 3.6, 3.7, MySQL, Django 2.0+

Uses pycryptodome

Add encrypted field classes to your Django models where unique=True and unique_together attributes work as expected.

For example:

from django.db import models
from django_crypto_fields.fields import EncryptedTextField, FirstnameField, IdentityField

class PatientModel (models.Model):

    first_name = FirstnameField(
        verbose_name="First Name")

    identity = IdentityField(
        verbose_name="Identity",
        unique=True)

    comment = EncryptedTextField(
        max_length=500)

Important: This module has known problems with postgres.

Installation

add to INSTALLED_APPS:

INSTALLED_APPS = (
        ...
    'django_crypto_fields.apps.AppConfig',
    ...
)

Add KEY_PATH to the folder in settings:

# folder where the encryption keys are stored
# Do not set for tests
KEY_PATH = '/etc/myproject/django_crypto_fields')

Add KEY_PREFIX (optional, the default is “user”):

# optional filename prefix for encryption keys files:
KEY_PREFIX = 'bhp066'

Run migrate to create the django_crypto_fields.crypt table:

python manage.py migrate django_crypto_fields

Encryption keys

Take care of the encryption keys!

In your tests you can set settings.DEBUG = True and settings.AUTO_CREATE_KEYS = True so that keys are generated for your tests. Encryption keys to will not automatically generate on a production system (DEBUG=False). See AppConfig.auto_create_keys.

History

django-crypto-fields has been used in our audited research projects that use our “Edc” for data collection and management. Data collected in our Edc are considered “source documents”. django-crypto-field adds field level encryption for sensitive field values such as names, identifiers, dob, etc (PII). Authorized study personnel accessing the data through the application can see PII. Downstream data management staff and statisticians accessing the database directly cannot.

Features

  • All values are stored as a pair of hash (hashlib.pbkdf2_hmac) and secret (rsa or aes);

  • A model using a django-crypto-fields field class stores the hash only;

  • A separate table relates the hash to it’s secret and is referenced internally by the field class;

Advantages

  • Automatically creates encryption key sets (RSA, AES and salt) and stores them in the KEY_PATH folder;

  • Supports unique constraints and compound constraints that including encrypted fields. The hash is stored in the model’s db_table and not the secret. The unique=True and unique_together attributes work as expected;

  • The dataset is de-identified at rest. This has many advantages but helps us work well with our analysis team. The data analysis team do not need to see PII. They just want a de-identified dataset. A de-identified dataset is one where PII fields are encrypted and others not. With the RSA keys removed, the dataset is effectively de-identified;

  • Datasets from other systems with shared PII values, such as identity numbers, can be prepared for meta-analysis using the same keys and algorithms;

  • The dataset can be permanently obscured by dropping the Crypt table from the DB (it has all the secrets);

  • By default field classes exist for two sets of keys. You can customize KEY_FILENAMES to create as many sets as needed. With multiple sets of keys you have more control over who gets to see what.

Disadvantages

  • Limited support for lookup types. The “query value” is the hash not the decrypted secret, so Django lookups like ['startswith', 'istartswith', 'endswith', 'iendswith', 'contains', 'icontains', 'iexact'] are not supported.

  • Hashing with a secret may be considered less secure than just a “secret”. You decide what your requirements are. For systems that collect PII in fields classes from django-crypto-fields, we take all the basic security precautions: OS and application-level password protection, Full-Drive encryption, physical security and so on.

Other encrypted field modules are available if you just want to use encrypted field classes in Django models and do not need unique constraints nor plan to join tables on encrypted fields for analysis.

Contribute

  • Issue Tracker: github.com/erikvw/django-crypto-fields/issues

  • Source Code: github.com/erikvw/django-crypto-fields

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

django_crypto_fields-0.1.29-py3-none-any.whl (56.5 kB view details)

Uploaded Python 3

File details

Details for the file django_crypto_fields-0.1.29-py3-none-any.whl.

File metadata

  • Download URL: django_crypto_fields-0.1.29-py3-none-any.whl
  • Upload date:
  • Size: 56.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.0.0.post20200309 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.8.1

File hashes

Hashes for django_crypto_fields-0.1.29-py3-none-any.whl
Algorithm Hash digest
SHA256 88436aacdc659cd463f196abe216a86c07f4555d901f6190304c9b58d98c149d
MD5 2c63be1fa5d84054805865442d18fa4b
BLAKE2b-256 0da9bb394c0c947ce0e70998b15357d5fe4927b1d1594bc96304c4e4b200bd70

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page