Django app for storing time-series metrics in Elasticsearch.
Project description
django-elasticsearch-metrics
Django app for storing time-series metrics in Elasticsearch.
Pre-requisites
- Python 2.7 or >=3.6
- Django 1.11 or 2.0
- Elasticsearch 6
Install
pip install django-elasticsearch-metrics
Quickstart
Add "elasticseach_metrics"
to INSTALLED_APPS
.
INSTALLED_APPS += ["elasticsearch_metrics"]
Define the ELASTICSEARCH_DSL
setting.
ELASTICSEARCH_DSL = {"default": {"hosts": "localhost:9200"}}
This setting is passed to elasticsearch_dsl.connections.configure
so
it takes the same parameters.
In one of your apps, define a new metric in metrics.py
.
A Metric
is a subclass of elasticsearch_dsl.Document
.
# myapp/metrics.py
from elasticsearch_metrics import metrics
class PageView(metrics.Metric):
user_id = metrics.Integer(index=True, doc_values=True)
Use the sync_metrics
management command to ensure that the index template
for your metric is created in Elasticsearch.
# This will create an index template called myapp_pageview
python manage.py sync_metrics
Now add some data:
from myapp.metrics import PageView
user = User.objects.latest()
# By default we create an index for each day.
# Therefore, this will persist the document
# to an index called, e.g. "myapp_pageview_2020.02.04"
PageView.record(user_id=user.id)
Go forth and search!
# perform a search across all page views
PageView.search()
Per-month or per-year indices
By default, an index is created for every day that a metric is saved.
You can change this to create an index per month or per year by changing
the ELASTICSEARCH_METRICS_DATE_FORMAT
setting.
# settings.py
# Monthly:
ELASTICSEARCH_METRICS_DATE_FORMAT = "%Y.%m"
# Yearly:
ELASTICSEARCH_METRICS_DATE_FORMAT = "%Y"
Index settings
You can configure the index template settings by setting
Metric.Index.settings
.
class PageView(metrics.Metric):
user_id = metrics.Integer()
class Index:
settings = {"number_of_shards": 2, "refresh_interval": "5s"}
Index templates
Each Metric
will have its own index template.
The index template name and glob pattern are computed from the app label
for the containing app and the class's name. For example, a PageView
class defined in myapp/metrics.py
will have an index template with the
name myapp_pageview
and a template glob pattern of myapp_pageview_*
.
If you declare a Metric
outside of an app, you will need to set
app_label
.
class PageView(metrics.Metric):
class Meta:
app_label = "myapp"
Alternatively, you can set template_name
and/or template
explicitly.
class PageView(metrics.Metric):
user_id = metrics.Integer()
class Meta:
template_name = "myapp_pviews"
template = "myapp_pviews_*"
Abstract metrics
from elasticsearch_metrics import metrics
class MyBaseMetric(metrics.Metric):
user_id = metrics.Integer()
class Meta:
abstract = True
class PageView(MyBaseMetric):
class Meta:
app_label = "myapp"
Optional factory_boy integration
import factory
from elasticsearch_metrics.factory import MetricFactory
from ..myapp.metrics import MyMetric
class MyMetricFactory(MetricFactory):
my_int = factory.Faker("pyint")
class Meta:
model = MyMetric
def test_something():
metric = MyMetricFactory() # index metric in ES
assert isinstance(metric.my_int, int)
Configuration
ELASTICSEARCH_DSL
: Required. Connection settings passed toelasticsearch_dsl.connections.configure
.ELASTICSEARCH_METRICS_DATE_FORMAT
: Date format to use when creating indexes. Default:%Y.%m.%d
(same date format Elasticsearch uses for date math)
Management commands
sync_metrics
: Ensure that index templates have been created for your metrics.show_metrics
: Pretty-print a listing of all registered metrics.check_metrics
: Check if index templates are in sync. Exits with an error code if any metrics are out of sync.
Signals
Signals are located in the elasticsearch_metrics.signals
module.
pre_index_template_create(Metric, index_template, using)
: Sent beforePUT
ting a new index template into Elasticsearch.post_index_template_create(Metric, index_template, using)
: Sent afterPUT
ting a new index template into Elasticsearch.pre_save(Metric, instance, using, index)
: Sent at the beginning of a Metric'ssave()
method.post_save(Metric, instance, using, index)
: Sent at the end of a Metric'ssave()
method.
Caveats
_source
is disabled by default on metric indices in order to save disk space. For most metrics use cases, Users will not need to retrieve the source JSON documents. Be sure to understand the consequences of this: https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping-source-field.html#_disabling_source . To enable_source
, you can override it inclass Meta
.
class MyMetric(metrics.Metric):
class Meta:
source = metrics.MetaField(enabled=True)
Resources
- Elasticsearch as a Time Series Data Store
- Pythonic Analytics with Elasticsearch
- In Search of Agile Time Series Database
License
MIT Licensed.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for django-elasticsearch-metrics-5.0.0.tar.gz
Algorithm | Hash digest | |
---|---|---|
SHA256 | 97e8e0c69d1b150e4d6267c81afbd942c6d229ba3ed35cfbc8e1cb0de7d41056 |
|
MD5 | 5980fd095099e67aaff68e3da7ce0feb |
|
BLAKE2b-256 | 8f82e3af99016c697fdea2925a9c81513b7ff320117915f1017cd341ac87e4b0 |
Hashes for django_elasticsearch_metrics-5.0.0-py2.py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1e589faf70323f23b13b55b20588988189361ef6b5a59a4908adf1946eba7608 |
|
MD5 | 0f4ea79c3d0154eef88dbbfde12f4ab7 |
|
BLAKE2b-256 | 121d3a9268f9b99a7529a59661f6430df139ccd44a658eacdc3a6c08e7880f63 |