This is a pre-production deployment of Warehouse. Changes made here affect the production instance of PyPI (pypi.python.org).
Help us improve Python packaging - Donate today!

Django app to provide a JS agnostic way to work with charts for Python 3+

Project Description
Graphos
----------------

[![Build Status](https://travis-ci.org/agiliq/django-graphos.png)](https://travis-ci.org/agiliq/django-graphos)

Graphos is a Django app to normalize data to create beautiful charts.

* Demo: [http://agiliq.com/demo/graphos/](http://agiliq.com/demo/graphos/).
* Docs: [https://pythonhosted.org/django-graphos-3/](https://pythonhosted.org/django-graphos-3/).

### Supported Backends:

* Python Nested lists
* CSV Files
* MongoDB
* Redis
* Django ORM

### Charting API Supported

* [Flot](http://flotcharts.org)
* [Google Charts API](https://developers.google.com/chart/)
* [YUI Charts](http://yuilibrary.com/yui/docs/charts/)
* [Morris.js](http://www.oesmith.co.uk/morris.js/)
* [Highcharts](http://www.highcharts.com/)

### Chart types supported

#### Flot

* Line chart
* Bar Chart
* Point Chart

#### Google Charts

* Area chart
* Bar chart
* Candlestick charts
* Column chart
* Line chart
* Pie chart
* Treemap chart
* Area chart

#### YUI

* Line chart
* Column chart
* Bar chart
* Pie chart

#### Morris.js

* Line chart
* Column chart
* Donut chart

#### Highcharts

(You will need to buy a license if you use highcharts for commerical use)

* Line Chart
* Bar Chart
* Column Chart
* Pie Chart

#### Matplotlib

* LineChart
* BarChart


### Demo

Install the requirements, `manage.py runserver`.
The installed demo app shows the various suported chart types.


### Overview of Plot generation

Generating a plot requires two things. A DataSource and a Chart object.

In your view, you do something like this:

data = [
['Year', 'Sales', 'Expenses'],
[2004, 1000, 400],
[2005, 1170, 460],
[2006, 660, 1120],
[2007, 1030, 540]
]
Chart = LineChart(SimpleDataSource(data=data), html_id="line_chart")

And then in the template:

{{ chart.as_html }}


### Examples

#### Generating a plot from python list

data = [
['Year', 'Sales', 'Expenses'],
[2004, 1000, 400],
[2005, 1170, 460],
[2006, 660, 1120],
[2007, 1030, 540]
]
Chart = LineChart(SimpleDataSource(data=data))

#### Generating a plot from CSV file

csv_file = open("hello.csv")
LineChart(CSVDataSource(csv_file))

#### Generating a plot from the ORM

queryset = Accounts.objects.filter(foo=bar)
LineChart(ModelDataSource(queryset, fields=["year", "sales", "expenses"]))


#### Generating a plot from Redis
Todo

#### Generating a plot from MongoDB
Todo

### Installation

pip install django-graphos

### Compatibility

Graphos is compatible with Python 2.7 and Python 3.3+

[available on pypi](https://pypi.python.org/pypi/django-graphos/)


### Creating new DataSource

A DataSource is a class which has these three methods.

get_data
get_header
get_first_column

`get_header` is used by a `Renderer` to create the labels.
`get_first_column` is used to set the x axis labels
`get_data` is used to get the data for display. It should always return a nested list. Eg:

[
['Year', 'Sales', 'Expenses'],
[2004, 1000, 400],
[2005, 1170, 460],
[2006, 660, 1120],
[2007, 1030, 540]
]

If you create a class extending `SimpleDataSource`, and implement `get_data`. You get
`get_header` and `get_first_column` for free.

### Creating new Renderer

A renderer is a class which takes a `DataSource` and can convert it to the html to display.

The only required method on a `Renderer` is `as_html`. This will convert the dat ato a format which can display the chart.

Generally you will convert the data to json and pass it to the template which you return.


### License

BSD

Release History

Release History

This version
History Node

1.1

History Node

1.0

History Node

0.1.1

Download Files

Download Files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

File Name & Checksum SHA256 Checksum Help Version File Type Upload Date
django-graphos-3-1.1.tar.gz (57.6 kB) Copy SHA256 Checksum SHA256 Source May 17, 2016

Supported By

WebFaction WebFaction Technical Writing Elastic Elastic Search Pingdom Pingdom Monitoring Dyn Dyn DNS Sentry Sentry Error Logging CloudAMQP CloudAMQP RabbitMQ Heroku Heroku PaaS Kabu Creative Kabu Creative UX & Design Fastly Fastly CDN DigiCert DigiCert EV Certificate Rackspace Rackspace Cloud Servers DreamHost DreamHost Log Hosting