Skip to main content

Custom Django integration for MeiliSearch.

Project description

Django-Meili

A package to integrate Meilisearch with Django in a seamless way. This pacakge is tested on Meilisearch v1.60.

Install

pip install django_meili

Usage

Settings

Update your settings.py file to include the following:

INSTALLED_APPS = [
    # ...,  <--- Any 3rd Party code
    "django_meili",
    # ...,  <--- All your modules
]

# ....

MEILISEARCH = {}

You must define the django_meili application before any of your code that uses the application.

Example in Models

Update a model to include the following:

from django_meili.models import IndexMixin
from django.db import models

class Post(IndexMixin, models.Model):
    """Model definition for Post."""

    title = models.CharField(max_length=255)
    body = models.TextField()

    class Meta:
        """Meta definition for Post."""

        verbose_name = "Post"
        verbose_name_plural = "Posts"

    class MeiliMeta:
        filterable_fields = ("title",)
        searchable_fields = ("id", "title", "body")
        displayed_fields = ("id", "title", "body")

    def __str__(self):
        return self.title

Searching

Now you can search from meilisearch using Model.meilisearch:

Post.meilisearch.search("Hello World") # => <Queryset for Post>

API

MEILISEARCH in settings.py

These are the settings available to the package. The values show are the defaults.

MEILISEARCH = {
    'HTTPS': False, # Whether HTTPS is enabled for the meilisearch server
    'HOST': 'localhost', # The host for the meilisearch server
    'MASTER_KEY': None, # The master key for meilisearch. See https://www.meilisearch.com/docs/learn/security/basic_security for more detail
    'PORT': 7700, # The port for the meilisearch server
    'TIMEOUT': None, # The timeout to wait for when using sync meilisearch server
    'CLIENT_AGENTS': None, # The client agents for the meilisearch server
    'DEBUG': DEBUG, # Whether to throw exceptions on failed creation of documents
    'SYNC': False, # Whether to execute operations to meilisearch in a synchronous manner (waiting for each rather than letting the task queue operate)
    'OFFLINE': False, # Whether to make any http requests for the application.
    'DEFAULT_BATCH_SIZE': 1000, # For syncindex the default batch size for import queryset
}

django_meili.models.IndexMixin

The IndexMixin is how an index is defined on a model. To configure the IndexMixin define a class on the model called MeiliMeta. The IndexMixin defines two new properties on the model:

  1. meilisearch - The queryset used to search.
  2. _meilisearch - the MeiliMeta values available on the model.

In addition, the IndexMixin defines three methods:

  1. meili_filter() - Should this row be synced in meilisearch
  2. meili_serialize() - How the model is serialized into a dictionary
  3. meili_geo() - What does the _geo column look like (optional)

MeiliMeta

The listed values here are default values. The displayed, searchable, filterable, and sortable should all be iterables containing field names, see the example above.

class MeiliMeta:
    displayed_fields = None # the fields displayed when querying meilisearch
    searchable_fields = None # the searchable fields when querying meilisearch
    filterable_fields = None # the fields available to filter by using meilisearch
    sortable_fields = None # the fields that can be sorted by using meilisearch
    supports_geo = False # Does the model support geolocation
    index_name = "<model.__name__>" # the name of the meilisearch index
    primary_key = "pk" # the primary key field for the index

django_meili.querysets.IndexQuerySet

The queryset defines the searchable operations on the index. It attempts to mimic the django queryset API, but differs in 2 notable ways:

  1. To do geo-filtering, you pass a positional argument
  2. Not all queryset operations are implemented.

Development

  1. clone the repo
  2. ./bin/setup.sh
  3. ./bin/test.sh
  4. Develop

Contact

If there are any issues, please feel free to make an issue. If you have suggested improvements, please make an issue where we can discuss.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

django_meili-0.0.7.tar.gz (104.3 kB view details)

Uploaded Source

Built Distribution

django_meili-0.0.7-py3-none-any.whl (16.5 kB view details)

Uploaded Python 3

File details

Details for the file django_meili-0.0.7.tar.gz.

File metadata

  • Download URL: django_meili-0.0.7.tar.gz
  • Upload date:
  • Size: 104.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-requests/2.32.3

File hashes

Hashes for django_meili-0.0.7.tar.gz
Algorithm Hash digest
SHA256 122915d42ab4328591c40f3826a9f8d76e1093c6772c0566e5cb2f3070cdd257
MD5 3c640c052daed8160f7732fa5b520831
BLAKE2b-256 9a3f439b0a8611a4e6b522ec5c49a70b90810e861db50653b31f53eb81e3da0d

See more details on using hashes here.

File details

Details for the file django_meili-0.0.7-py3-none-any.whl.

File metadata

File hashes

Hashes for django_meili-0.0.7-py3-none-any.whl
Algorithm Hash digest
SHA256 f6d1917c5264e4fdf2686006b930aae1b57a60cfc118d49270c04e2566724508
MD5 03bc5c473ac1c97216ced50ac34fb292
BLAKE2b-256 00b79d9dbc086488ca3e0496a17d069d9854abd551179db9fe277b5b90171045

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page