Skip to main content

A simple mongo based log handler for python/django

Project description

MongoLog is a simple Mongo based log handler that can be easly used with standard python/django logging.

Please visit the MongoLog Users Group with any questions/suggestions. Thanks.

https://travis-ci.org/gnulnx/django-mongolog.svg?branch=master https://coveralls.io/repos/gnulnx/django-mongolog/badge.svg?branch=master&service=github https://api.codacy.com/project/badge/grade/d8d4eaa24bbe4ae5afe608210e4b8d28

Quick start

  1. Add “mongolog” to your INSTALLED_APPS like this
    INSTALLED_APPS = (
        ...
        'mongolog',
    )
    
  2. Add the SimpleMongoLogHandler to your LOGGING config.
    LOGGING = {
        'version': 1,
        'handlers': {
            'mongolog': {
                'level': 'DEBUG',
                'class': 'mongolog.SimpleMongoLogHandler',
                'connection': 'mongodb://localhost:27017'
            },
        },
        'loggers': {
            '': {
                'handlers': ['mongolog'],
                'level': 'DEBUG',
                'propagate': True
            },
        },
    }
    
  1. Start your management shell:

    ./manage.py shell
    
  2. Create a couple of log entries
    import logging
    import pymongo
    logger = logging.getLogger(__name__)
    

    One of the cool things about mongolog is that it can log complex data structures in a way that makes them both human parsable and queryable. So for instance if we create the following log message:

    # Pro Tip: You can copy and paste all of this
    
    LOG_MSG = {
        'test': True,
        'test class': 'TestBaseMongoLogHandler',
        'Life': {
            'Domain': {
                'Bacteria': [
                    {
                        'name': ValueError,  # intentional bad value
                        'description': 'Just a bad description'
                    }
                ],
                'Archaea': [],
                'Eukaryota': [
                    {
                        'name': 'Excavata',
                        'description': 'Various flagellate protozoa',
                    },
                    {
                        'name': 'Amoebozoa',
                        'descritpion': 'most lobose amoeboids and slime moulds',
                    },
                    {
                        'name': 'Opisthokonta',
                        'description': 'animals, fungi, choanoflagellates, etc.',
                    },
                ]
            }
        }
    }
    

    Now let’s log our message at each of the defined log levels…

    logger.debug(LOG_MSG)
    logger.info(LOG_MSG)
    logger.warn(LOG_MSG)
    logger.error(LOG_MSG)
    try:
        raise ValueError("Bad Value")
    except ValueError as e:
        logger.exception(LOG_MSG)
        raise
    
  3. Now log into your mongo shell and look at some results
    ./mongo
    
    use mongolog
    db.mongolog.findOne({'level': "INFO"})
    

    Will produde a mongo document like:

    {
        "_id" : ObjectId("5664a22bdd162ca58f0693d2"),
        "name" : "__builtin__",
        "thread" : NumberLong("140735229362944"),
        "level" : "INFO",
        "process" : 42383,
        "module" : "<console>",
        "filename" : "<console>",
        "func" : "<module>",
        "time" : ISODate("2015-12-06T21:01:31.258Z"),
        "msg" : {
            "test" : true,
            "Life" : {
                "Domain" : {
                    "Eukaryota" : [
                        {
                            "name" : "Excavata",
                            "description" : "Various flagellate protozoa"
                        },
                        {
                            "name" : "Amoebozoa",
                            "descritpion" : "most lobose amoeboids and slime moulds"
                        },
                        {
                            "name" : "Opisthokonta",
                            "description" : "animals, fungi, choanoflagellates, etc."
                        }
                    ],
                    "Archaea" : [ ],
                    "Bacteria" : [
                        {
                            "name" : "<type 'exceptions.ValueError'>",
                            "description" : "Just a bad description"
                        }
                    ]
                }
            },
            "test class" : "TestBaseMongoLogHandler"
        },
        "path" : "<console>",
        "line" : 1
    }
    

    Take a look at the “msg” section and you will notice that all of the information from our LOG_MSG is contained under that key in standard mongo data structures. This means that we can query based on our log message. For example in your mongo shell try the following queries:

    // Find all documents logged with a 'test' key
    > db.mongolog.find({'msg.test': {$exists: true}}).count()
    5
    
    // Find all documents that have a Eukaryota name in the list of  ["Amoebozoa", "Opisthokonta"]
    > db.mongolog.find({
        'msg.Life.Domain.Eukaryota.name': {
            $in: ["Amoebozoa", "Opisthokonta"]
        }
      }).count()
    1
    
    // Same as above but only those documents logged at level INFO
    >db.mongolog.find({
        'level': 'INFO',
        'msg.Life.Domain.Eukaryota.name': {$in: ["Amoebozoa", "Opisthokonta"]},
    }).count()
    1
    
    // And again at level ERROR.
    >db.mongolog.find({
        'level': 'INFO',
        'msg.Life.Domain.Eukaryota.name': {$in: ["Amoebozoa", "Opisthokonta"]},
    }).count()
    2
    
    // Notice that now two records are returned.  This is because
    // logger.exception(...) also logs at level ERROR, but also notice that if when we
    // pretty print the records...
    >db.mongolog.find({
        'level': 'ERROR',
        'msg.Life.Domain.Eukaryota.name': {$in: ["Amoebozoa", "Opisthokonta"]},
    }).pretty()
    
    // ...that one of the entries has exception info.  When running in a real environment
    // and not the console the 'trace' section will be populated with the full stack trace.
    "exception" : {
        "info" : [
            "<type 'exceptions.ValueError'>",
            "Bad Value",
            "<traceback object at 0x106853b90>"
        ],
        "trace" :
         null
    }
    

Future Roadmap

Currently mongolog has pretty solid support for logging arbitrary datastructures. If it finds an object it doesn’t know how to natively serialize it will try to convert it to str().

The next steps are to create a set of most used query operations for probing the log.

Please give a shout out with feedback and feature requests.

Thanks

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
django-mongolog-0.8.1.tar.gz (32.5 kB) Copy SHA256 hash SHA256 Source None Oct 25, 2016

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page