Skip to main content

A django library for running Nextflow pipelines and storing their result.

Project description

django-nextflow

django-nextflow is Django app for running Nextflow pipelines and storing their results in a database within a Django web app.

Installation

nextflow.py is available through PyPI:

pip install django-nextflow

You must install the Nextflow executable itself separately: see the Nextflow Documentation for help with this.

Setup

To use the app within Django, add django-nextflow to your list of INSTALLED_APPS.

You must define four values in your settings.py:

  • NEXTFLOW_PIPELINE_ROOT - the location on disk where the Nextflow pipelines are stored. All references to pipeline files will use this as the root.

  • NEXTFLOW_DATA_ROOT - the location on disk to store execution records.

  • NEXTFLOW_UPLOADS_ROOT - the location on disk to store uploaded data.

  • NEXTFLOW_PUBLISH_DIR - the name of the folder published files will be saved to. Within an execution directory, django-nextflow will look in NEXTFLOW_PUBLISH_DIR/process_name for output files for that process. These files must be published as symlinks, not copies, otherwise django-nextflow will not recognise them.

Usage

Begin by defining one or more Pipelines. These are .nf files somewhere within the NEXTFLOW_PIPELINE_ROOT you defined:

from django_nextflow.models import Pipeline

pipeline = Pipeline.objects.create(path="workflows/main.nf")

You can also provide paths to a JSON input schema file (structured using the nf-core style) and a config file to use when running it:

pipeline = Pipeline.objects.create(
    path="workflows/main.nf",
    description="Some useful pipeline.",
    schema_path="main.json",
    config_path="nextflow.config"
)
print(pipeline.input_schema) # Returns inputs as dict

These can be assigned to PipelineCategory objects for organisation.

To run the pipeline:

execution = pipeline.run(params={"param1": "xxx"})

This will run the pipeline using Nextflow, and save database entries for three different models:

  • The Execution that is returned represents the running of this pipeline on this occasion. It stores the stdout and stderr of the command, and has a get_log_text() method for reading the full log file from disk. A directory will be created in NEXTFLOW_DATA_ROOT for the execution to take place in.

  • ProcessExecution records for each process that execution within the running of the pipeline. These also have their own stdout and stderr, as well as status information etc.

  • Data records for each file published by the processes in the pipeline. Note that this is not every file produced - but specifically those output by the process via its output channel. For this to work the processes must be configured to publish these files to a particular directory name (the one that NEXTFLOW_PUBLISH_DIR is set to), and to a subdirectory within that directory with the process's name.

If you want to supply a file for which there is a Data object as the input to a pipeline, you can do so as follows:

execution = pipeline.run(
    params={"param1": "xxx"},
    data_params={"param2": 23, "param3": [24, 25]}
)

...where 23, 24 and 25 are the IDs of Data objects.

You can also supply entire executions as inputs, in which case they will be provided to the pipeline as a directory of symlinked files:

execution = pipeline.run(
    params={"param1": "xxx"},
    execution_params={"genome1": 23, "genome2": 24}
)

The above run method will run the entire pipeline and create the database objects at the end. To create the Execution object straight away and update it as execution proceeds, use run_and_update. This can take a post_poll function which will execute every time the Execution updates.

The Data objects above were created by running some pipeline, but you might want to create one from scratch without running a pipeline. You can do so either from a path string, or from a Django UploadedFile object:

data1 = Data.create_from_path("/path/to/file.txt")
data2 = Data.create_from_upload(django_upload_object)

The file will be copied to NEXTFLOW_UPLOADS_ROOT in this case.

You can also create a Data object in chunks using:

data = Data.create_from_partial_upload(django_upload_object1, filename="large-file.txt")
data = Data.create_from_partial_upload(django_upload_object2, data=data)
data = Data.create_from_partial_upload(django_upload_object3, data=data, final=True)

You can determine all the downstream data of a data object within its generating execution using the downstream_within_execution method. Likewise the upstream_within_execution method will return all upstream data within the execution.

Changelog

0.12.1

4th June, 2022

  • Added compatability with nextflow.py v0.3

0.12

2nd May, 2022

  • Executions now save their input params.
  • Execution inputs to executions now organise their inputs by param.

0.11

22nd April, 2022

  • Data is now marked as binary or non-binary.
  • Data now has contents() method for returning their plain text contents.

0.10

19th April, 2022

  • Pipelines can now be organised into categories with a new PipelineCatgeory model.
  • Pipelines now have an order field for ordering within categories.

0.9.3

23rd March, 2022

  • Fixed data post-delete hook handling of missing upstream objects.

0.9.2

21st March, 2022

  • Added data post-delete behavior.
  • Fixed up/downstream within execution lookups.

0.9.1

7th March, 2022

  • Partial data upload will now optionally verify filesize matches expected.

0.9

6th March, 2022

  • Data objects can now be created from upload objects blob by blob.
  • is_readyfield added to Data to denote those in process of being created.
  • Models now have default ordering.
  • Executions can now be manually created with very minimal information.
  • Fixed missing MD5 hash for pipeline output files.
  • Fixed issue with generating finished time when values were missing.

0.8

27th February, 2022

  • Execution objects now have label and notes fields.
  • Data objects now have label and notes fields.
  • Added method to 'remove' data objects rather than delete them entirely.
  • Data objects now have MD5 hash upon creation.

0.7

19th February, 2022

  • Executions can now generate a graph representation of themselves.
  • Data objects can now detect all their up/downstream data within an execution.

0.6

14th February, 2022

  • Pipelines now have a run_and_update method, for constant Execution updating.
  • Better Execution ID generation.

0.5

3rd February, 2022

  • Pipelines can now take execution inputs.
  • Fixed method for detecting downstream data products.

0.4

12th January, 2022

  • Better support for multiple data objects.
  • Data objects can now be directories, which will be automatically zipped.
  • When creating upstream data connections, data objects will be created if needed.

0.3.2

26th December, 2021

  • Allow IDs to be big ints.

0.3.1

24th December, 2021

  • Data file sizes can now be more than 232.
  • Data file names can now be 1000 characters long.

0.3

21st December, 2021

  • Pipelines can now take multiple data inputs per param.
  • Profiles can now be specified when running a pipeline.
  • Compression extension .gz now ignored when detecting filetype.
  • Process executions start and end times are now recorded.
  • Improved system for identifying upstream data inputs.
  • Improved publish_dir identification.
  • Improved log file reading.

0.2

14th November, 2021

  • Pipelines now have description fields.
  • Data objects now have creation time fields.
  • Added upstream data objects as well as downstream to process executions.

0.1.1

3rd November, 2021

  • Fixed duration string parsing.

0.1

29th October, 2021

  • Initial models for pipelines, execution, process executions and data.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

django_nextflow-0.12.1-py3-none-any.whl (26.7 kB view details)

Uploaded Python 3

File details

Details for the file django_nextflow-0.12.1-py3-none-any.whl.

File metadata

  • Download URL: django_nextflow-0.12.1-py3-none-any.whl
  • Upload date:
  • Size: 26.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.9

File hashes

Hashes for django_nextflow-0.12.1-py3-none-any.whl
Algorithm Hash digest
SHA256 9231783a3b19e2d49b330d8845f9749497f93da0cab4afaab84e6546f98ddba7
MD5 2aa6611ffd8e3a1873ae32470e0b7641
BLAKE2b-256 a6b3ccf12b333d5aa930ea682d84be4540a380cc6a0ceb43dbb4b8b2274cc00d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page