Tools for working with pydata.pandas in your Django projects
Project description
Tools for working with pandas in your Django projects
Contributors
What’s New
This is release facilitates running of test with Python 3.10 and automates the publishing of the package to PYPI as per PR #146 (again much thanks @graingert). As usual we have attempted support legacy versions of Python/Django/Pandas and this sometimes results in deperation errors being displayed in when test are run. To avoid use python -Werror runtests.py
Dependencies
django-pandas supports Django (>=1.4.5) or later and requires django-model-utils (>= 1.4.0) and Pandas (>= 0.12.0). Note because of problems with the requires directive of setuptools you probably need to install numpy in your virtualenv before you install this package or if you want to run the test suite
pip install numpy pip install -e .[test] python runtests.py
Some pandas functionality requires parts of the Scipy stack. You may wish to consult http://www.scipy.org/install.html for more information on installing the Scipy stack.
You need to install your preferred version of Django. as that Django 2 does not support Python 2.
Contributing
Please file bugs and send pull requests to the GitHub repository and issue tracker.
Installation
Start by creating a new virtualenv for your project
mkvirtualenv myproject
Next install numpy and pandas and optionally scipy
pip install numpy pip install pandas
You may want to consult the scipy documentation for more information on installing the Scipy stack.
Finally, install django-pandas using pip:
pip install django-pandas
or install the development version from github
pip install https://github.com/chrisdev/django-pandas/tarball/master
Usage
IO Module
The django-pandas.io module provides some convenience methods to facilitate the creation of DataFrames from Django QuerySets.
read_frame
Parameters
qs: A Django QuerySet.
- fieldnames: A list of model field names to use in creating the DataFrame.
You can span a relationship in the usual Django way by using double underscores to specify a related field in another model
- index_col: Use specify the field name to use for the DataFrame index.
If the index field is not in the field list it will be appended
- coerce_floatBoolean, defaults to True
Attempt to convert values to non-string, non-numeric objects (like decimal.Decimal) to floating point.
- verbose: If this is True then populate the DataFrame with the
human readable versions of any foreign key or choice fields else use the actual values set in the model.
- column_names: If not None, use to override the column names in the
DateFrame
Examples
Assume that this is your model:
class MyModel(models.Model): full_name = models.CharField(max_length=25) age = models.IntegerField() department = models.CharField(max_length=3) wage = models.FloatField()
First create a query set:
from django_pandas.io import read_frame qs = MyModel.objects.all()
To create a dataframe using all the fields in the underlying model
df = read_frame(qs)
The df will contain human readable column values for foreign key and choice fields. The DataFrame will include all the fields in the underlying model including the primary key. To create a DataFrame using specified field names:
df = read_frame(qs, fieldnames=['age', 'wage', 'full_name'])
To set full_name as the DataFrame index
qs.to_dataframe(['age', 'wage'], index_col='full_name'])
You can use filters and excludes
qs.filter(age__gt=20, department='IT').to_dataframe(index_col='full_name')
DataFrameManager
django-pandas provides a custom manager to use with models that you want to render as Pandas Dataframes. The DataFrameManager manager provides the to_dataframe method that returns your models queryset as a Pandas DataFrame. To use the DataFrameManager, first override the default manager (objects) in your model’s definition as shown in the example below
#models.py from django_pandas.managers import DataFrameManager class MyModel(models.Model): full_name = models.CharField(max_length=25) age = models.IntegerField() department = models.CharField(max_length=3) wage = models.FloatField() objects = DataFrameManager()
This will give you access to the following QuerySet methods:
to_dataframe
to_timeseries
to_pivot_table
to_dataframe
Returns a DataFrame from the QuerySet
Parameters
- fieldnames: The model field names to utilise in creating the frame.
to span a relationship, use the field name of related fields across models, separated by double underscores,
- index: specify the field to use for the index. If the index
field is not in the field list it will be appended
- coerce_float: Attempt to convert the numeric non-string data
like object, decimal etc. to float if possible
- verbose: If this is True then populate the DataFrame with the
human readable versions of any foreign key or choice fields else use the actual value set in the model.
Examples
Create a dataframe using all the fields in your model as follows
qs = MyModel.objects.all() df = qs.to_dataframe()
This will include your primary key. To create a DataFrame using specified field names:
df = qs.to_dataframe(fieldnames=['age', 'department', 'wage'])
To set full_name as the index
qs.to_dataframe(['age', 'department', 'wage'], index='full_name'])
You can use filters and excludes
qs.filter(age__gt=20, department='IT').to_dataframe(index='full_name')
to_timeseries
A convenience method for creating a time series i.e the DataFrame index is instance of a DateTime or PeriodIndex
Parameters
- fieldnames: The model field names to utilise in creating the frame.
to span a relationship, just use the field name of related fields across models, separated by double underscores,
- index: specify the field to use for the index. If the index
field is not in the field list it will be appended. This is mandatory.
- storage: Specify if the queryset uses the wide or long format
for data.
- pivot_columns: Required once the you specify long format
storage. This could either be a list or string identifying the field name or combination of field. If the pivot_column is a single column then the unique values in this column become a new columns in the DataFrame If the pivot column is a list the values in these columns are concatenated (using the ‘-’ as a separator) and these values are used for the new timeseries columns
- values: Also required if you utilize the long storage the
values column name is use for populating new frame values
freq: the offset string or object representing a target conversion
rs_kwargs: Arguments based on pandas.DataFrame.resample
- verbose: If this is True then populate the DataFrame with the
human readable versions of any foreign key or choice fields else use the actual value set in the model.
Examples
Using a long storage format
#models.py class LongTimeSeries(models.Model): date_ix = models.DateTimeField() series_name = models.CharField(max_length=100) value = models.FloatField() objects = DataFrameManager()
Some sample data::
======== ===== ===== date_ix series_name value ======== ===== ====== 2010-01-01 gdp 204699 2010-01-01 inflation 2.0 2010-01-01 wages 100.7 2010-02-01 gdp 204704 2010-02-01 inflation 2.4 2010-03-01 wages 100.4 2010-02-01 gdp 205966 2010-02-01 inflation 2.5 2010-03-01 wages 100.5 ========== ========== ======
Create a QuerySet
qs = LongTimeSeries.objects.filter(date_ix__year__gte=2010)
Create a timeseries dataframe
df = qs.to_timeseries(index='date_ix', pivot_columns='series_name', values='value', storage='long') df.head() date_ix gdp inflation wages 2010-01-01 204966 2.0 100.7 2010-02-01 204704 2.4 100.4 2010-03-01 205966 2.5 100.5
Using a wide storage format
class WideTimeSeries(models.Model): date_ix = models.DateTimeField() col1 = models.FloatField() col2 = models.FloatField() col3 = models.FloatField() col4 = models.FloatField() objects = DataFrameManager() qs = WideTimeSeries.objects.all() rs_kwargs = {'how': 'sum', 'kind': 'period'} df = qs.to_timeseries(index='date_ix', pivot_columns='series_name', values='value', storage='long', freq='M', rs_kwargs=rs_kwargs)
to_pivot_table
A convenience method for creating a pivot table from a QuerySet
Parameters
- fieldnames: The model field names to utilise in creating the frame.
to span a relationship, just use the field name of related fields across models, separated by double underscores,
values : column to aggregate, optional
- rowslist of column names or arrays to group on
Keys to group on the x-axis of the pivot table
- colslist of column names or arrays to group on
Keys to group on the y-axis of the pivot table
- aggfuncfunction, default numpy.mean, or list of functions
If list of functions passed, the resulting pivot table will have hierarchical columns whose top level are the function names (inferred from the function objects themselves)
- fill_valuescalar, default None
Value to replace missing values with
- marginsboolean, default False
Add all row / columns (e.g. for subtotal / grand totals)
dropna : boolean, default True
Example
# models.py class PivotData(models.Model): row_col_a = models.CharField(max_length=15) row_col_b = models.CharField(max_length=15) row_col_c = models.CharField(max_length=15) value_col_d = models.FloatField() value_col_e = models.FloatField() value_col_f = models.FloatField() objects = DataFrameManager()
Usage
rows = ['row_col_a', 'row_col_b'] cols = ['row_col_c'] pt = qs.to_pivot_table(values='value_col_d', rows=rows, cols=cols)
CHANGES
0.6.7 (2024-03-27)
Fix several deprecation warnings in pandas 2.1 which became actual errors in 2.2 as per #158 (thanks to @bixbyr)
0.6.6 (2021-10-27)
The main feature of this is release in the use of a GHA to automate the publishing of the package to PYPI as per PR #146 (again much thanks @graingert). Several other minor issues have also been addressed.
0.6.5 (2021-10-15)
This version added support for Pandas >=1.3 (thanks to @graingert)
Other Changes:
0.6.4 (2021-02-08)
Bumped version number as the previous release was incorrectly uploaded to pypi
0.6.1 (2020-05-26)
Supports the latest release of Pandas 1.0.3
0.6.0 (2019-01-11)
Removes compatibility with Django versions < 1.8
0.5.2 (2019-01-3)
This is the last version that supports Django < 1.8
Improved coerce_float option (thanks @ZuluPro )
Ensure compatibility with legacy versions of Django ( < 1.8)
Test pass with Django 2+ and python 3.7
0.5.1 (2018-01-26)
Address Unicode decode error when installing with pip3 on docker (Thanks @utapyngo)
0.5.0 (2018-01-20)
Django 2.0 compatibility (Thanks @meirains)
0.4.5 (2017-10-4)
A Fix for fieldname deduplication bug thanks to @kgabbott
0.4.4 (2017-07-16)
The verbose argument now handles more use cases (Thanks to @henhuy and Kevin Abbott)
Corece float argument add to `to_timeseries()` method (Thanks Yousuf Jawwad)
0.4.3 (2017-06-02)
Fix doc typos and formatting
Prevent column duplication in read_frame (Thanks Kevin Abbott)
0.4.2 (2017-05-22)
Compatibility with pandas 0.20.1
Support for Python 2.7 and 3.5 with Django versions 1.8+
Suport for Python 3.6 and Django 1.11
We still support legacy versions (Python 2.7 and Django 1.4)
0.4.1 (2016-02-05)
Address the incompatibility with Django 1.9 due to the removal of specialized query sets like the ValuesQuerySet
Address the removal of the PassThrougManager from django-model-utils version 2.4. We’ve removed the dependency on django-model-utils and included the PassThroughManger (which was always a standalone tool distributed a part of django-model-utils) for compatibility with earlier versions of Django (<= 1.8). For more recent versions of Django we’re using Django’s built in QuerySet.as_manager().
Now supports Pandas 0.14.1 and above
The fall in Coverage in this release largely reflects the integration of the PassThroughManager into the code base. We’ll add the required test coverage for the PassThroughManager in subsequent releases.
0.3.1 (2015-10-25)
Extends the ability to span a ForeignKey relationship with double underscores to OneToOneField too thanks to Safe Hammad
Provide better support for ManyToMany and OneToMany relations thanks to Jeff Sternberg and @MiddleFork
0.3.0 (2015-06-16)
This version supports Django 1.8
Support for Pandas 0.16
0.2.2 (2015-03-02)
Added Support for Django 1.7
0.2.1 (2015-01-28)
Added Support for Values QuerySets
Support for Python 2.6
Note we still have limited support for Django 1.7 but this will be coming in the next release
0.2.0 (2014-06-15)
Added the io module so that DataFrames can be created from any queryset so you don’t need to to add a DataFrame manager to your models. This is good for working with legacy projects.
added a Boolean verbose argument to all methods (which defaults to True) This populate the DataFrame columns with the human readable versions of foreign key or choice fields.
Improved the performance DataFrame creation by removing dependency on np.core.records.fromrecords
Loads of bug fixes, more tests and improved coverage and better documentation
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file django-pandas-0.6.7.tar.gz
.
File metadata
- Download URL: django-pandas-0.6.7.tar.gz
- Upload date:
- Size: 32.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f64fdf4aec1ff36f853a87400482f2f7826c403a2582a7429610a3eae97dca02 |
|
MD5 | b1d78ab800178e626f57a080c1f199f3 |
|
BLAKE2b-256 | c0a9d4afe3d373c87eca29c3cf514521fe9b4653c97c4129361f2fcb79e482ef |
File details
Details for the file django_pandas-0.6.7-py3-none-any.whl
.
File metadata
- Download URL: django_pandas-0.6.7-py3-none-any.whl
- Upload date:
- Size: 22.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 09db19db618591da76a555b8cf01cef632856261c5d39e47d3ce0a172bac1829 |
|
MD5 | 1c29bb4fe02cba4360d84a7451f700ed |
|
BLAKE2b-256 | 7128c187bed88a594984132f2fa543d88a969958f793d65b78620e96e0639b81 |