Skip to main content

Tools for working with pydata.pandas in your Django projects

Project description

https://github.com/chrisdev/django-pandas/actions/workflows/test.yml/badge.svg https://coveralls.io/repos/chrisdev/django-pandas/badge.png?branch=master

Tools for working with pandas in your Django projects

Contributors

What’s New

This is release facilitates running of test with Python 3.10 and automates the publishing of the package to PYPI as per PR #146 (again much thanks @graingert). As usual we have attempted support legacy versions of Python/Django/Pandas and this sometimes results in deperation errors being displayed in when test are run. To avoid use python -Werror runtests.py

Dependencies

django-pandas supports Django (>=1.4.5) or later and requires django-model-utils (>= 1.4.0) and Pandas (>= 0.12.0). Note because of problems with the requires directive of setuptools you probably need to install numpy in your virtualenv before you install this package or if you want to run the test suite

pip install numpy
pip install -e .[test]
python runtests.py

Some pandas functionality requires parts of the Scipy stack. You may wish to consult http://www.scipy.org/install.html for more information on installing the Scipy stack.

You need to install your preferred version of Django. as that Django 2 does not support Python 2.

Contributing

Please file bugs and send pull requests to the GitHub repository and issue tracker.

Installation

Start by creating a new virtualenv for your project

mkvirtualenv myproject

Next install numpy and pandas and optionally scipy

pip install numpy
pip install pandas

You may want to consult the scipy documentation for more information on installing the Scipy stack.

Finally, install django-pandas using pip:

pip install django-pandas

or install the development version from github

pip install https://github.com/chrisdev/django-pandas/tarball/master

Usage

IO Module

The django-pandas.io module provides some convenience methods to facilitate the creation of DataFrames from Django QuerySets.

read_frame

Parameters

  • qs: A Django QuerySet.

  • fieldnames: A list of model field names to use in creating the DataFrame.

    You can span a relationship in the usual Django way by using double underscores to specify a related field in another model

  • index_col: Use specify the field name to use for the DataFrame index.

    If the index field is not in the field list it will be appended

  • coerce_floatBoolean, defaults to True

    Attempt to convert values to non-string, non-numeric objects (like decimal.Decimal) to floating point.

  • verbose: If this is True then populate the DataFrame with the

    human readable versions of any foreign key or choice fields else use the actual values set in the model.

  • column_names: If not None, use to override the column names in the

    DateFrame

Examples

Assume that this is your model:

class MyModel(models.Model):

    full_name = models.CharField(max_length=25)
    age = models.IntegerField()
    department = models.CharField(max_length=3)
    wage = models.FloatField()

First create a query set:

from django_pandas.io import read_frame
qs = MyModel.objects.all()

To create a dataframe using all the fields in the underlying model

df = read_frame(qs)

The df will contain human readable column values for foreign key and choice fields. The DataFrame will include all the fields in the underlying model including the primary key. To create a DataFrame using specified field names:

df = read_frame(qs, fieldnames=['age', 'wage', 'full_name'])

To set full_name as the DataFrame index

qs.to_dataframe(['age', 'wage'], index_col='full_name'])

You can use filters and excludes

qs.filter(age__gt=20, department='IT').to_dataframe(index_col='full_name')

DataFrameManager

django-pandas provides a custom manager to use with models that you want to render as Pandas Dataframes. The DataFrameManager manager provides the to_dataframe method that returns your models queryset as a Pandas DataFrame. To use the DataFrameManager, first override the default manager (objects) in your model’s definition as shown in the example below

#models.py

from django_pandas.managers import DataFrameManager

class MyModel(models.Model):

    full_name = models.CharField(max_length=25)
    age = models.IntegerField()
    department = models.CharField(max_length=3)
    wage = models.FloatField()

    objects = DataFrameManager()

This will give you access to the following QuerySet methods:

  • to_dataframe

  • to_timeseries

  • to_pivot_table

to_dataframe

Returns a DataFrame from the QuerySet

Parameters

  • fieldnames: The model field names to utilise in creating the frame.

    to span a relationship, use the field name of related fields across models, separated by double underscores,

  • index: specify the field to use for the index. If the index

    field is not in the field list it will be appended

  • coerce_float: Attempt to convert the numeric non-string data

    like object, decimal etc. to float if possible

  • verbose: If this is True then populate the DataFrame with the

    human readable versions of any foreign key or choice fields else use the actual value set in the model.

Examples

Create a dataframe using all the fields in your model as follows

qs = MyModel.objects.all()

df = qs.to_dataframe()

This will include your primary key. To create a DataFrame using specified field names:

df = qs.to_dataframe(fieldnames=['age', 'department', 'wage'])

To set full_name as the index

qs.to_dataframe(['age', 'department', 'wage'], index='full_name'])

You can use filters and excludes

qs.filter(age__gt=20, department='IT').to_dataframe(index='full_name')

to_timeseries

A convenience method for creating a time series i.e the DataFrame index is instance of a DateTime or PeriodIndex

Parameters

  • fieldnames: The model field names to utilise in creating the frame.

    to span a relationship, just use the field name of related fields across models, separated by double underscores,

  • index: specify the field to use for the index. If the index

    field is not in the field list it will be appended. This is mandatory.

  • storage: Specify if the queryset uses the wide or long format

    for data.

  • pivot_columns: Required once the you specify long format

    storage. This could either be a list or string identifying the field name or combination of field. If the pivot_column is a single column then the unique values in this column become a new columns in the DataFrame If the pivot column is a list the values in these columns are concatenated (using the ‘-’ as a separator) and these values are used for the new timeseries columns

  • values: Also required if you utilize the long storage the

    values column name is use for populating new frame values

  • freq: the offset string or object representing a target conversion

  • rs_kwargs: Arguments based on pandas.DataFrame.resample

  • verbose: If this is True then populate the DataFrame with the

    human readable versions of any foreign key or choice fields else use the actual value set in the model.

Examples

Using a long storage format

#models.py

class LongTimeSeries(models.Model):
    date_ix = models.DateTimeField()
    series_name = models.CharField(max_length=100)
    value = models.FloatField()

    objects = DataFrameManager()

Some sample data::

========   =====       =====
date_ix    series_name value
========   =====       ======
2010-01-01  gdp        204699

2010-01-01  inflation  2.0

2010-01-01  wages      100.7

2010-02-01  gdp        204704

2010-02-01  inflation  2.4

2010-03-01  wages      100.4

2010-02-01  gdp        205966

2010-02-01  inflation  2.5

2010-03-01  wages      100.5
==========  ========== ======

Create a QuerySet

qs = LongTimeSeries.objects.filter(date_ix__year__gte=2010)

Create a timeseries dataframe

df = qs.to_timeseries(index='date_ix',
                      pivot_columns='series_name',
                      values='value',
                      storage='long')
df.head()

date_ix      gdp     inflation     wages

2010-01-01   204966     2.0       100.7

2010-02-01   204704      2.4       100.4

2010-03-01   205966      2.5       100.5

Using a wide storage format

class WideTimeSeries(models.Model):
    date_ix = models.DateTimeField()
    col1 = models.FloatField()
    col2 = models.FloatField()
    col3 = models.FloatField()
    col4 = models.FloatField()

    objects = DataFrameManager()

qs = WideTimeSeries.objects.all()

rs_kwargs = {'how': 'sum', 'kind': 'period'}
df = qs.to_timeseries(index='date_ix', pivot_columns='series_name',
                      values='value', storage='long',
                      freq='M', rs_kwargs=rs_kwargs)

to_pivot_table

A convenience method for creating a pivot table from a QuerySet

Parameters

  • fieldnames: The model field names to utilise in creating the frame.

    to span a relationship, just use the field name of related fields across models, separated by double underscores,

  • values : column to aggregate, optional

  • rowslist of column names or arrays to group on

    Keys to group on the x-axis of the pivot table

  • colslist of column names or arrays to group on

    Keys to group on the y-axis of the pivot table

  • aggfuncfunction, default numpy.mean, or list of functions

    If list of functions passed, the resulting pivot table will have hierarchical columns whose top level are the function names (inferred from the function objects themselves)

  • fill_valuescalar, default None

    Value to replace missing values with

  • marginsboolean, default False

    Add all row / columns (e.g. for subtotal / grand totals)

  • dropna : boolean, default True

Example

# models.py
class PivotData(models.Model):
    row_col_a = models.CharField(max_length=15)
    row_col_b = models.CharField(max_length=15)
    row_col_c = models.CharField(max_length=15)
    value_col_d = models.FloatField()
    value_col_e = models.FloatField()
    value_col_f = models.FloatField()

    objects = DataFrameManager()

Usage

rows = ['row_col_a', 'row_col_b']
cols = ['row_col_c']

pt = qs.to_pivot_table(values='value_col_d', rows=rows, cols=cols)

CHANGES

0.6.7 (2024-03-27)

Fix several deprecation warnings in pandas 2.1 which became actual errors in 2.2 as per #158 (thanks to @bixbyr)

0.6.6 (2021-10-27)

The main feature of this is release in the use of a GHA to automate the publishing of the package to PYPI as per PR #146 (again much thanks @graingert). Several other minor issues have also been addressed.

0.6.5 (2021-10-15)

This version added support for Pandas >=1.3 (thanks to @graingert)

Other Changes:

  • Migrated from Travis to Github Actions for CI (also @graingert)

  • Avoid the use of deprecated methods #139 and #142 (again much thanks @graingert)

  • Fix for issue #135 (Thanks @Yonimdo)

  • Silence Django 3.2 errors on testing on etc. #133 thanks @whyscream.

0.6.4 (2021-02-08)

Bumped version number as the previous release was incorrectly uploaded to pypi

0.6.1 (2020-05-26)

Supports the latest release of Pandas 1.0.3

0.6.0 (2019-01-11)

Removes compatibility with Django versions < 1.8

0.5.2 (2019-01-3)

This is the last version that supports Django < 1.8

  • Improved coerce_float option (thanks @ZuluPro )

  • Ensure compatibility with legacy versions of Django ( < 1.8)

  • Test pass with Django 2+ and python 3.7

0.5.1 (2018-01-26)

  • Address Unicode decode error when installing with pip3 on docker (Thanks @utapyngo)

0.5.0 (2018-01-20)

  • Django 2.0 compatibility (Thanks @meirains)

0.4.5 (2017-10-4)

  • A Fix for fieldname deduplication bug thanks to @kgabbott

0.4.4 (2017-07-16)

  • The verbose argument now handles more use cases (Thanks to @henhuy and Kevin Abbott)

  • Corece float argument add to `to_timeseries()` method (Thanks Yousuf Jawwad)

0.4.3 (2017-06-02)

  • Fix doc typos and formatting

  • Prevent column duplication in read_frame (Thanks Kevin Abbott)

0.4.2 (2017-05-22)

  • Compatibility with pandas 0.20.1

  • Support for Python 2.7 and 3.5 with Django versions 1.8+

  • Suport for Python 3.6 and Django 1.11

  • We still support legacy versions (Python 2.7 and Django 1.4)

0.4.1 (2016-02-05)

  • Address the incompatibility with Django 1.9 due to the removal of specialized query sets like the ValuesQuerySet

  • Address the removal of the PassThrougManager from django-model-utils version 2.4. We’ve removed the dependency on django-model-utils and included the PassThroughManger (which was always a standalone tool distributed a part of django-model-utils) for compatibility with earlier versions of Django (<= 1.8). For more recent versions of Django we’re using Django’s built in QuerySet.as_manager().

  • Now supports Pandas 0.14.1 and above

  • The fall in Coverage in this release largely reflects the integration of the PassThroughManager into the code base. We’ll add the required test coverage for the PassThroughManager in subsequent releases.

0.3.1 (2015-10-25)

  • Extends the ability to span a ForeignKey relationship with double underscores to OneToOneField too thanks to Safe Hammad

  • Provide better support for ManyToMany and OneToMany relations thanks to Jeff Sternberg and @MiddleFork

0.3.0 (2015-06-16)

  • This version supports Django 1.8

  • Support for Pandas 0.16

0.2.2 (2015-03-02)

  • Added Support for Django 1.7

0.2.1 (2015-01-28)

  • Added Support for Values QuerySets

  • Support for Python 2.6

  • Note we still have limited support for Django 1.7 but this will be coming in the next release

0.2.0 (2014-06-15)

  • Added the io module so that DataFrames can be created from any queryset so you don’t need to to add a DataFrame manager to your models. This is good for working with legacy projects.

  • added a Boolean verbose argument to all methods (which defaults to True) This populate the DataFrame columns with the human readable versions of foreign key or choice fields.

  • Improved the performance DataFrame creation by removing dependency on np.core.records.fromrecords

  • Loads of bug fixes, more tests and improved coverage and better documentation

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

django-pandas-0.6.7.tar.gz (32.5 kB view details)

Uploaded Source

Built Distribution

django_pandas-0.6.7-py3-none-any.whl (22.6 kB view details)

Uploaded Python 3

File details

Details for the file django-pandas-0.6.7.tar.gz.

File metadata

  • Download URL: django-pandas-0.6.7.tar.gz
  • Upload date:
  • Size: 32.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for django-pandas-0.6.7.tar.gz
Algorithm Hash digest
SHA256 f64fdf4aec1ff36f853a87400482f2f7826c403a2582a7429610a3eae97dca02
MD5 b1d78ab800178e626f57a080c1f199f3
BLAKE2b-256 c0a9d4afe3d373c87eca29c3cf514521fe9b4653c97c4129361f2fcb79e482ef

See more details on using hashes here.

File details

Details for the file django_pandas-0.6.7-py3-none-any.whl.

File metadata

File hashes

Hashes for django_pandas-0.6.7-py3-none-any.whl
Algorithm Hash digest
SHA256 09db19db618591da76a555b8cf01cef632856261c5d39e47d3ce0a172bac1829
MD5 1c29bb4fe02cba4360d84a7451f700ed
BLAKE2b-256 7128c187bed88a594984132f2fa543d88a969958f793d65b78620e96e0639b81

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page