Skip to main content

Caches SQL queries built with Django ORM

Project description

Django Prepared Queries

PyPI version codecov Build Status

django_pq allows to cache SQL generated with Django ORM and reuse cached queries with only substituting new parameters values.

Short example

Some developers think that Django ORM is slow. It is true if your code looks like this:

from django.db import models
from countries_field.fields import countries_isnull, countries_contains

    
def filter_queryset(self, domains=None, **kwargs):
    query = models.Q()
    if domains:
        query &= ((models.Q(allow_domains__name__in=domains) |
                   models.Q(allow_domains__isnull=True)) &
                  (~models.Q(deny_domains__name__in=domains) |
                   models.Q(deny_domains__isnull=True)))
    else:
        query &= (models.Q(allow_domains__isnull=True) &
                  models.Q(deny_domains__isnull=True))
    user_agent = kwargs.pop('user_agent', None)
    if user_agent:
        query &= (models.Q(user_agents=user_agent) |
                  models.Q(user_agents__isnull=True))
    else:
        query &= models.Q(user_agents__isnull=True)

    country = kwargs.pop('country')
    if country:
        query &= countries_isnull() | countries_contains([country])
    else:
        query &= countries_isnull()

    return self.get_queryset().filter(query)

Generated SQL query is quite long and in our case takes up to 50% of HTTP request handling. What if we could cache generated SQL and just substitute actual parameters values instead of repeating heavy queryset filtering?

Well, with django_pq you can do following.

from django.db import models
import django_pq


# Add caching decorator for heavy queryset constructing method
@django_pq.substitute_lazy()
def filter_queryset_lazy(self, domains=None, **kwargs):
    query = models.Q()
    
    # branches in decorated function must check real value instead of Lazy 
    # wrapper, because actual value this time could be False.
    if django_pq.reveal(domains):
        # You pass Lazy wrappers in to any lookup parameters for queryset,
        # and these Lazy wrappers remain lazy until it's time to query the 
        # database.
        query &= ((models.Q(allow_domains__name__in=domains) |
                   models.Q(allow_domains__isnull=True)) &
                  (~models.Q(deny_domains__name__in=domains) |
                   models.Q(deny_domains__isnull=True)))
    else:
        query &= (models.Q(allow_domains__isnull=True) &
                  models.Q(deny_domains__isnull=True))
                
    # ... 
    # 
    # modify other parts of queryset constuction with respect of lazy nature of
    # arguments.
    
    return self.get_queryset().filter(query)
        
def filter_queryset(self, **kwargs):
    # wrap parameters into context manager so Lazy wrappers could get actual
    # values when they need.
    with django_pq.LazyContext(**kwargs):
        queryset = self.filter_queryset_lazy(**kwargs)
        # queryset is now RawQuerySet with Lazy wrappers in params.
        
        # database queries should be performed within LazyContext.
        return queryset.first()
        

That's it - your queryset generation code is cached.

Rules for preparing code for caching

  1. Don't check Lazy wrappers for anything - use reveal() to check actual parameter values. I.e. Lazy(None) is not None is always true (this it not what you meant really).
  2. Don't pass Model instances as parameters. This allows Model instance method calls and may lead to implicit branching that could not be detected from actual parameters list. Instead, pass primary key values.
  3. Don't query DB within cached method - branching could not be detected.
  4. Add all if expressions as new parameters to your method - it would be usefull for proper caching.
  5. Don't pass empty lists as parameter values. Django ORM checks it for emptiness and removes empty lookups from WhereNode (with respect of boolean algebra rules). Pass None instead.
  6. Don't use any volatile values like datetime.now()in queryset filtering; pass it as a parameter instead.
  7. Test your code with 100% branch coverage before adding caching.

Normalize parameters

To help you to normalize parameters passed into cached function LazyContext may call a list of callables and return normalized parameter values when entering context.

from django.db import models
from django_pq import LazyContext


def model_to_pk(kwargs):
    for k, v in list(kwargs.items()):
        if isinstance(v, models.Model):
            kwargs[k] = v.pk  # Model -> Model.pk
    return kwargs 
    
def empty_list_to_none(kwargs):
    for k, v in list(kwargs.items()):
        if isinstance(v, list) and not v:
            kwargs[k] = None  # [] -> None
    return kwargs


def filter_queryset(self, **kwargs):    
    with LazyContext(model_to_pk, empty_list_to_none, **kwargs) as lazy_kwargs:
        queryset = self.filter_queryset_lazy(**lazy_kwargs)
        return queryset.first()

How it works

  1. First, substitute_lazy() decorator wraps all parameters with Lazy wrapper, and with wrapper remains "lazy" until SQL generation is completed.
  2. Your code is called twice, with lazy wrappers as arguments and with actual values, to ensure that lazy result is identical to native queryset.
  3. If SQL and normalized parameters match, a RawQuerySet instance is cached with Lazy wrappers as parameters.
  4. Cache key respects presence of any argument and certain constants like True, False, 0, 1, None.
  5. In "cache hit" situation new actual parameters values are substituted from LazyContext into RawQuerySet.params and that's result of caching.
  6. If you are doing it right, RawQuerySet will act almost like normal QuerySet, or (more correctly) as your Model instances iterator.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for django-prepared-queries, version 0.3.1
Filename, size File type Python version Upload date Hashes
Filename, size django_prepared_queries-0.3.1.tar.gz (8.9 kB) File type Source Python version None Upload date Hashes View hashes

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page