Skip to main content

A software load balancer for your Django database.

Project description

https://travis-ci.org/btimby/django-proxysql.png https://coveralls.io/repos/github/btimby/django-proxysql/badge.svg?branch=master https://badge.fury.io/py/django-proxysql.svg

django-proxysql

What?

A software load balancer for your Django database. This project provides a Django database engine that manages multiple peer database connections and distributes queries to each equally. It also notes if a peer fails and stops sending queries to that peer until it recovers.

This project was developed for MySQL, Galera and ProxySQL. However it could be used with any Django compatible database engine. Most likely the connection error detection would need to be adapted (as MySQLdb.Error is used to detect failure).

django-proxysql can be used without ProxySQL (for instance, your peers could be Galera cluster nodes), or with a different load balancer such as MaxScale. You can also combine this with multidb, where your Django router routes between multiple pools of database peers.

Why?

Django multidb support is implemented at a high level. Thus it is not aware of connection failures. It will continue routing queries to a down host causing errors.

Some suggest adding a liveness check within the multidb router, but this adds unecessary overhead. django-proxysql also routes queries, but at the database engine level which enables it to identify connection failures and route queries accordingly.

django-proxysql assumes you are using a pool of peer MySQL, ProxySQL or MaxScale servers that are all exactly equivalent. It does not intelligently route queries, that is left to the downstream peers.

How?

First install django-proxysql, for example:

pip install django-proxysql

Then configure your MySQL peers as additional databases in Django settings. Set your default django database to use this engine and specify the peers. You can also specify the optional CHECK_INTERVAL which controls how often a downed peer is rechecked (30s default).

DATABASES = {
    'default': {
        'ENGINE': 'django_proxysql.backends.proxysql',
        'PEERS': ['peer0', 'peer1'],
        'CHECK_INTERVAL': 30,
    },
    'peer0': {
        'ENGINE': 'django.db.backends.mysql',
        'NAME': 'db_name',
        'USER': 'user',
        'PASSWORD': 'password',
        'HOST': 'peer0',
        'PORT': 6033,
    },
    'peer1': {
        'ENGINE': 'django.db.backends.mysql',
        'NAME': 'db_name',
        'USER': 'user',
        'PASSWORD': 'password',
        'HOST': 'peer1',
        'PORT': 6033,
    },
}

Now when you use the default database in Django, connections will be randomly distributed to the peers.

If you don’t need a dedicated load balancer such as ProxySQL or MaxScale, you can simply configure your Galera cluster nodes as your peers.

DATABASES = {
    'default': {
        'ENGINE': 'django_proxysql.backends.proxysql',
        'PEERS': ['galera0', 'galera1'],
    },
    'peer0': {
        'ENGINE': 'django.db.backends.mysql',
        'NAME': 'db_name',
        'USER': 'user',
        'PASSWORD': 'password',
        'HOST': 'galera0',
        'PORT': 6033,
    },
    'peer1': {
        'ENGINE': 'django.db.backends.mysql',
        'NAME': 'db_name',
        'USER': 'user',
        'PASSWORD': 'password',
        'HOST': 'galera1',
        'PORT': 6033,
    },
}

You can configure more than one django-proxysql backend and then use Django multidb to route between those.

DATABASES = {
    'default': {
        'ENGINE': 'django_proxysql.backends.proxysql',
        'PEERS': ['peer0', 'peer1'],
    },
    'users': {
        'ENGINE': 'django_proxysql.backends.proxysql',
        'PEERS': ['peer2', 'peer3'],
    },
    'peer0': {
        'ENGINE': 'django.db.backends.mysql',
        'NAME': 'db_name',
        'USER': 'user',
        'PASSWORD': 'password',
        'HOST': 'peer0',
        'PORT': 6033,
    },
    'peer1': {
        'ENGINE': 'django.db.backends.mysql',
        'NAME': 'db_name',
        'USER': 'user',
        'PASSWORD': 'password',
        'HOST': 'peer1',
        'PORT': 6033,
    },
    'peer2': {
        'ENGINE': 'django.db.backends.mysql',
        'NAME': 'db_name',
        'USER': 'user',
        'PASSWORD': 'password',
        'HOST': 'peer2',
        'PORT': 6033,
    },
    'peer3': {
        'ENGINE': 'django.db.backends.mysql',
        'NAME': 'db_name',
        'USER': 'user',
        'PASSWORD': 'password',
        'HOST': 'peer3',
        'PORT': 6033,
    },
}

Anything Else?

Because only connection errors are handled by the engine, other errors like dropped connections will cause failures in your application. Therefore if you are performing a rolling upgrade, you must gracefully drain each peer. For example, with ProxySQL you can do this by issuing the PROXYSQL PAUSE command within the admin interface (port 6032). This causes ProxySQL to stop accepting new connections, which django-proxysql will detect and handle without a single error.

Also note that when migrations are applied, Django performs a check of ALL CONFIGURED DATABASES. This bears repeating. All database peers must be online in order to perform database migrations.

Compatability

Python

2.7

3.5

3.6

3.7

Django

1.10

O

O

O

O

1.11

O

O

O

O

2.0

O

O

O

2.1

O

O

O

2.2

O

O

O

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

django-proxysql-0.8.tar.gz (9.4 kB view details)

Uploaded Source

File details

Details for the file django-proxysql-0.8.tar.gz.

File metadata

  • Download URL: django-proxysql-0.8.tar.gz
  • Upload date:
  • Size: 9.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.40.2 CPython/3.6.7

File hashes

Hashes for django-proxysql-0.8.tar.gz
Algorithm Hash digest
SHA256 7506c994044402685d677c49b5d70f3e4a1e1665972da9a41387cf2d65c06769
MD5 fa403c1f422c524b5a406a9c41ccd44b
BLAKE2b-256 c2be2fa6fad2575e56e16af4e91d6e4b0eb03ee196616b9c015d05f29ecff2cb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page