A multiprocessing distributed task queue for Django
Project description
A multiprocessing distributed task queue for Django
Features
Multiprocessing worker pool
Asynchronous tasks
Scheduled and repeated tasks
Encrypted and compressed packages
Failure and success database or cache
Result hooks, groups and chains
Django Admin integration
PaaS compatible with multiple instances
Multi cluster monitor
Redis, Disque, IronMQ, SQS, MongoDB or ORM
Rollbar and Sentry support
Requirements
Django > = 1.8
Tested with: Python 2.7 & 3.6. Django 1.8.19, 1.11.11 and 2.0.x
Brokers
Installation
Install the latest version with pip:
$ pip install django-q
Add django_q to your INSTALLED_APPS in your projects settings.py:
INSTALLED_APPS = ( # other apps 'django_q', )
Run Django migrations to create the database tables:
$ python manage.py migrate
Choose a message broker , configure and install the appropriate client library.
Read the full documentation at https://django-q.readthedocs.org
Configuration
All configuration settings are optional. e.g:
# settings.py example
Q_CLUSTER = {
'name': 'myproject',
'workers': 8,
'recycle': 500,
'timeout': 60,
'compress': True,
'cpu_affinity': 1,
'save_limit': 250,
'queue_limit': 500,
'label': 'Django Q',
'redis': {
'host': '127.0.0.1',
'port': 6379,
'db': 0, }
}
For full configuration options, see the configuration documentation.
Management Commands
Start a cluster with:
$ python manage.py qcluster
Monitor your clusters with:
$ python manage.py qmonitor
Check overall statistics with:
$ python manage.py qinfo
Creating Tasks
Use async from your code to quickly offload tasks:
from django_q.tasks import async, result
# create the task
async('math.copysign', 2, -2)
# or with a reference
import math.copysign
task_id = async(copysign, 2, -2)
# get the result
task_result = result(task_id)
# result returns None if the task has not been executed yet
# you can wait for it
task_result = result(task_id, 200)
# but in most cases you will want to use a hook:
async('math.modf', 2.5, hook='hooks.print_result')
# hooks.py
def print_result(task):
print(task.result)
For more info see Tasks
Schedule
Schedules are regular Django models. You can manage them through the Admin page or directly from your code:
# Use the schedule function
from django_q.tasks import schedule
schedule('math.copysign',
2, -2,
hook='hooks.print_result',
schedule_type=Schedule.DAILY)
# Or create the object directly
from django_q.models import Schedule
Schedule.objects.create(func='math.copysign',
hook='hooks.print_result',
args='2,-2',
schedule_type=Schedule.DAILY
)
# Run a task every 5 minutes, starting at 6 today
# for 2 hours
import arrow
schedule('math.hypot',
3, 4,
schedule_type=Schedule.MINUTES,
minutes=5,
repeats=24,
next_run=arrow.utcnow().replace(hour=18, minute=0))
For more info check the Schedules documentation.
Testing
To run the tests you will need py.test and pytest-django
Todo
Better tests and coverage
Less dependencies?
Acknowledgements
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for django_q-0.9.3-py2.py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5b1ae4a21aeb826e06ff7f09a5abcc417c7a2ddc4e029522c15186ca5144f7ff |
|
MD5 | bd9c41f563dc5b99b71b9c71a7e9ae46 |
|
BLAKE2b-256 | 6704fcc8fd20caf7e2b9b9c07bd3077041d3d4fe175000163cc23b635fdeb317 |