Skip to main content

Event sourcing and handling

Project description

==========================================
django-spark - Event sourcing and handling
==========================================

.. image:: https://travis-ci.org/matthiask/django-spark.png?branch=master
:target: https://travis-ci.org/matthiask/django-spark

Version |release|

This is not supposed to be real documentation; it's more a reminder for
myself.

The idea is that there are event sources and event handlers. Event
sources may create a stream of ``spark.api.Event`` instances, where each
event must have a ``group`` and a ``key``. Additional data may be added
to the ``Event`` as well. Keys are globally unique -- events with the
same key are still only processed exactly once. Groups are used to
determine which handlers handle a certain event.

Event handlers are functions which are called once per
``spark.api.Event`` instance if the event's group matches the event
handler's regex.


Some usage example code
=======================

Given a challenge, create events for the challenge (the specifics do not
matter):

.. code-block:: python

from datetime import date
from spark import api

def events_from_challenge(challenge):
if not challenge.is_active:
return

yield {
"group": 'challenge_created',
"key": 'challenge_created_%s' % challenge.pk,
"context": {"challenge": challenge},
}

if (date.today() - challenge.start_date).days > 2:
if challenge.donations.count() < 2:
yield {
"group": 'challenge_inactivity_2d',
"key": 'challenge_inactivity_2d_%s' % challenge.pk,
"context": {"challenge": challenge},
}

if (challenge.end_date - date.today()).days <= 2:
yield {
"group": 'challenge_ends_2d',
"key": 'challenge_ends_2d_%s' % challenge.pk,
"context": {"challenge": challenge},
}

if challenge.end_date < date.today():
yield {
"group": 'challenge_ended',
"key": 'challenge_ended_%s' % challenge.pk,
"context": {"challenge": challenge},
}


Send mails related to challenges (uses django-authlib's
``render_to_mail``):

.. code-block:: python

from authlib.email import render_to_mail

def send_challenge_mails(event):
challenge = event["context"]["challenge"]
render_to_mail(
# Different mail text per event group:
"challenges/mails/%s" % event["group"],
{
"challenge": challenge,
},
to=[challenge.user.email],
).send(fail_silently=True)


Register the handlers:

.. code-block:: python

class ChallengesConfig(AppConfig):
def ready(self):
# Prevent circular imports:
from spark import api

api.register_group_handler(
handler=send_challenge_mails,
group=r'^challenge',
)

Challenge = self.get_model('Challenge')

# All this does right now is register a post_save signal
# handler which runs the challenge instance through
# events_from_challenge:
api.register_model_event_source(
sender=Challenge,
source=events_from_challenge,
)


Now, events are generated and handled directly in process.
Alternatively, you might want to handle events outside the
request-response cycle. This can be achieved by only registering the
model event source e.g. in a management command, and then sending all
model instances through all event sources, and directly processing those
events, for example like this:

.. code-block:: python

from spark import api

api.register_model_event_source(...)

# Copied from the process_spark_sources management command inside
# this repository
for model, sources in api.MODEL_SOURCES.items():
for instance in model.objects.all():
for source in sources:
api.process_events(api.only_new_events(source(instance)))


- `Documentation <https://django-spark.readthedocs.io>`_
- `Github <https://github.com/matthiask/django-spark/>`_


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

django-spark-0.3.0.tar.gz (12.1 kB view details)

Uploaded Source

Built Distribution

django_spark-0.3.0-py2.py3-none-any.whl (17.0 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file django-spark-0.3.0.tar.gz.

File metadata

  • Download URL: django-spark-0.3.0.tar.gz
  • Upload date:
  • Size: 12.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.4.3 requests-toolbelt/0.8.0 tqdm/4.25.0 CPython/2.7.15rc1

File hashes

Hashes for django-spark-0.3.0.tar.gz
Algorithm Hash digest
SHA256 3628469898775786116f7363228dcd4d7c7f6403306a070500972af71f6b4af3
MD5 c678d4b8488ef6d600fb80a7ffff8328
BLAKE2b-256 a77c45d2b29f270286867896f00c5f4748c41008c1a006859689b9928671ad90

See more details on using hashes here.

File details

Details for the file django_spark-0.3.0-py2.py3-none-any.whl.

File metadata

  • Download URL: django_spark-0.3.0-py2.py3-none-any.whl
  • Upload date:
  • Size: 17.0 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.4.3 requests-toolbelt/0.8.0 tqdm/4.25.0 CPython/2.7.15rc1

File hashes

Hashes for django_spark-0.3.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 02033ad7c16c0d94e3e82bfec8e0653c3eb1e69b554a91c8d606ddfbbc0ffff6
MD5 dc41b9b1ab5ccb6e355dfe4d7beb6586
BLAKE2b-256 bc87caccafc969a7c47730df98afc1ede4abaf5cf495844a11725b94679c1ec9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page