Skip to main content

Queening and storing email backed for django

Project description

Dead simple async task queue. Stores tasks in database. No overhead infrastructure required just for throwing something off process.

https://github.com/wooyek/django-tasker

https://img.shields.io/travis/wooyek/django-tasker.svg https://img.shields.io/coveralls/wooyek/django-tasker.svg https://img.shields.io/pypi/v/django-tasker.svg?maxAge=2592000 https://img.shields.io/pypi/dm/django-tasker.svg?maxAge=2592000 https://img.shields.io/pypi/pyversions/django-tasker.svg

Usage

You are free to make task from function or class and instance methods. No boilerplate functions are required to wrap task logic.

With django models instances tasks will remember an instance primary key, load an instance and call a method.

class SomeModel(models.Model):
    ...

    @queueable
    def update_this_instance(self, *args, **kwargs):
        ...

    def must_do_something(self):
        ...
        self.update_this_instance.queue()
        ...

With plain old class object tasks will call it’s classmethod. Normal functions are also supported.

class PocoClass(Object):

    @queueable
    def do_stuff_with_models(cls, limit):
        ...

@queueable
def background_job(cls, with_this, and_that):
    ...

PocoClass.do_stuff_with_models.queue(10)
background_job.queue(foo, bar)

Limited support for arguments serialization

Call arguments are supported as long as they are json serializable and they’re serialized up to a TaskInfo.payload fields max_length. We don’t wan;t to be holding too much information, preferably models instances are holding just enough information for parametrize task execution.

Why not Celery?

Celery is great! But it’s sometimes an overkill. It’s a full-on messaging implementation with all the bells and whistles you need for sending tasks to some worker and getting a result back.

Maintaining all that infrastructure just to send an email every couple of request seems a bit too much.

Why not RQ?

Python-RQ is super. But it need’s Redis. It’s fine when your background work does not pile up. Using Redis to hold gigabytes of task data is like burning money.

Why DB as storage?

Because you already have it, it’s the simplest storage to use. And with fanout resulting in millions of tasks the only cheaper storage is disk.

Why not fire up more workers?

Sometimes you just can’t crunch task quick enough, for eg. because of the API throttling limits. It’s more sensible to store them and spread execution in time.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

django-tasker-0.2.60.tar.gz (13.5 kB view details)

Uploaded Source

File details

Details for the file django-tasker-0.2.60.tar.gz.

File metadata

  • Download URL: django-tasker-0.2.60.tar.gz
  • Upload date:
  • Size: 13.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: Python-urllib/2.7

File hashes

Hashes for django-tasker-0.2.60.tar.gz
Algorithm Hash digest
SHA256 6d7a97536b55029a089304445727ed5f68b9a21a7a8b6eb9b3475dc53835cbc1
MD5 96e5781575cffcbbf1fc33e32d2901ae
BLAKE2b-256 f253fb7caf38f06f4e3a1a4b873b45e2e975fb189d49d7ad594c9a2599b6a8c0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page