A Django database backend for integration with TimescaleDB
Project description
A database backend and tooling for Timescaledb.
Based on gist from WeRiot.
Quick start
Install via pip
pip install django-timescaledb
Use as DATABASE engine in settings.py:
Standard PostgreSQL
DATABASES = {
'default': {
'ENGINE': 'timescale.db.backends.postgresql',
...
},
}
PostGIS
DATABASES = {
'default': {
'ENGINE': 'timescale.db.backends.postgis',
...
},
}
If you already make use of a custom PostgreSQL db backend you can set the path in settings.py.
TIMESCALE_DB_BACKEND_BASE = "django.contrib.gis.db.backends.postgis"
Inherit from the TimescaleModel. A hypertable will automatically be created.
class TimescaleModel(models.Model):
"""
A helper class for using Timescale within Django, has the TimescaleManager and
TimescaleDateTimeField already present. This is an abstract class it should
be inheritted by another class for use.
"""
time = TimescaleDateTimeField(interval="1 day")
objects = TimescaleManager()
class Meta:
abstract = True
Implementation would look like this
from timescale.db.models.models import TimescaleModel
class Metric(TimescaleModel):
temperature = models.FloatField()
If you already have a table, you can either add time field of type TimescaleDateTimeField to your model or rename (if not already named time) and change type of existing DateTimeField (rename first then run makemigrations and then change the type, so that makemigrations considers it as change in same field instead of removing and adding new field). This also triggers the creation of a hypertable.
from timescale.db.models.fields import TimescaleDateTimeField
from timescale.db.models.managers import TimescaleManager
class Metric(models.Model):
time = TimescaleDateTimeField(interval="1 day")
objects = models.Manager()
timescale = TimescaleManager()
The name of the field is important as Timescale specific feratures require this as a property of their functions. ### Reading Data
“TimescaleDB hypertables are designed to behave in the same manner as PostgreSQL database tables for reading data, using standard SQL commands.”
As such the use of the Django’s ORM is perfectally suited to this type of data. By leveraging a custom model manager and queryset we can extend the queryset methods to include Timescale functions.
Time Bucket More Info
Metric.timescale.filter(time__range=date_range).time_bucket('time', '1 hour')
# expected output
<TimescaleQuerySet [{'bucket': datetime.datetime(2020, 12, 22, 11, 0, tzinfo=<UTC>)}, ... ]>
Time Bucket Gap Fill More Info
from metrics.models import *
from django.db.models import Count, Avg
from django.utils import timezone
from datetime import timedelta
ranges = (timezone.now() - timedelta(days=2), timezone.now())
(Metric.timescale
.filter(time__range=ranges)
.time_bucket_gapfill('time', '1 day', ranges[0], ranges[1], datapoints=240)
.annotate(Avg('temperature')))
# expected output
<TimescaleQuerySet [{'bucket': datetime.datetime(2020, 12, 21, 21, 24, tzinfo=<UTC>), 'temperature__avg': None}, ...]>
Histogram More Info
from metrics.models import *
from django.db.models import Count
from django.utils import timezone
from datetime import timedelta
ranges = (timezone.now() - timedelta(days=3), timezone.now())
(Metric.timescale
.filter(time__range=ranges)
.values('device')
.histogram(field='temperature', min_value=50.0, max_value=55.0, num_of_buckets=10)
.annotate(Count('device')))
# expected output
<TimescaleQuerySet [{'histogram': [0, 0, 0, 87, 93, 125, 99, 59, 0, 0, 0, 0], 'device__count': 463}]>
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file django-timescaledb-0.2.13.tar.gz
.
File metadata
- Download URL: django-timescaledb-0.2.13.tar.gz
- Upload date:
- Size: 13.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3a2dcdf224af318c6c813c7fbf323fa73ae9bd12d33cdf7540e34344ae62f739 |
|
MD5 | 65c842b4c59c7058169f44a16ecf1bec |
|
BLAKE2b-256 | 859f88107d46771b0236a80db0ab4324650b73973187141f214b24f46b7c4cf2 |