Skip to main content

A django library for mocking queryset functions in memory for testing

Project description

Latest Version Build Status Code Coverage Code Climate

Django Mock Queries

A library for mocking Django queryset functions in memory for testing

Features

  • QuerySet style support for method chaining
  • Filtering with Q objects
  • Aggregates generation
  • CRUD functions
  • Field lookups
  • django-rest-framework serializer asserts

Examples

from django.db.models import Avg, Q
from django_mock_queries.query import MockSet, MockModel

qs = MockSet(
    MockModel(mock_name='john', email='john@gmail.com'),
    MockModel(mock_name='jeff', email='jeff@hotmail.com'),
    MockModel(mock_name='bill', email='bill@gmail.com'),
)

print([x for x in qs.all().filter(email__icontains='gmail.com').select_related('address')])
# Outputs: [john, bill]

qs = MockSet(
    MockModel(mock_name='model s', msrp=70000),
    MockModel(mock_name='model x', msrp=80000),
    MockModel(mock_name='model 3', msrp=35000),
)

print(qs.all().aggregate(Avg('msrp')))
# Outputs: {'msrp__avg': 61666}

qs = MockSet(
    MockModel(mock_name='model x', make='tesla', country='usa'),
    MockModel(mock_name='s-class', make='mercedes', country='germany'),
    MockModel(mock_name='s90', make='volvo', country='sweden'),
)

print([x for x in qs.all().filter(Q(make__iexact='tesla') | Q(country__iexact='germany'))])
# Outputs: [model x, s-class]

qs = MockSet(cls=MockModel)
print(qs.create(mock_name='my_object', foo='1', bar='a'))
# Outputs: my_object

print([x for x in qs])
# Outputs: [my_object]

Test function that uses Django QuerySet:

from unittest import TestCase
from unittest.mock import patch
from django_mock_queries.query import MockSet, MockModel


class TestApi(TestCase):
    """
    Test function applies expected filters by patching Django's user model Manager or Queryset with a MockSet.
    """
    users = MockSet()
    user_objects = patch('django.contrib.auth.models.User.objects', users)
    
    def active_users(self):
        """
        Query active users.
        """
        return User.objects.filter(is_active=True).all()

    @user_objects
    def test_api_active_users_filters_by_is_active_true(self):
        self.users.add(
            MockModel(mock_name='active user', is_active=True),
            MockModel(mock_name='inactive user', is_active=False)
        )

        for user in self.active_users():
            self.assertTrue(user.is_active)

Test django-rest-framework model serializer:

class CarSerializer(serializers.ModelSerializer):
    """
    Car model serializer that includes a nested serializer and a method field.
    """
    make = ManufacturerSerializer()
    speed = serializers.SerializerMethodField()

    def get_speed(self, obj):
        return obj.format_speed()

    class Meta:
        model = Car
        fields = ('id', 'make', 'model', 'speed',)


def test_car_serializer_fields(self):
    """
    Test serializer returns fields with expected values and mock the result of nested serializer for field `make`.
    """
    car = Car(id=1, make=Manufacturer(id=1, name='vw'), model='golf', speed=300)

    values = {
        'id': car.id,
        'model': car.model,
        'speed': car.formatted_speed(),
    }

    assert_serializer(CarSerializer) \
        .instance(car) \
        .returns('id', 'make', 'model', 'speed') \
        .values(**values) \
        .mocks('make') \
        .run()

Full Example

There is a full Django application in the examples/users folder. It shows how to configure django_mock_queries in your tests and run them with or without setting up a Django database. Running the mock tests without a database can be much faster when your Django application has a lot of database migrations.

To run your Django tests without a database, add a new settings file, and call monkey_patch_test_db(). Use a wildcard import to get all the regular settings as well.

# settings_mocked.py
from django_mock_queries.mocks import monkey_patch_test_db

from users.settings import *

monkey_patch_test_db()

Then run your Django tests with the new settings file:

./manage.py test --settings=users.settings_mocked

Here's the pytest equivalent:

pytest --ds=users.settings_mocked

That will run your tests without setting up a test database. All of your tests that use Django mock queries should run fine, but what about the tests that really need a database?

ERROR: test_create (examples.users.analytics.tests.TestApi)
----------------------------------------------------------------------
Traceback (most recent call last):
  File "/.../examples/users/analytics/tests.py", line 28, in test_create
    start_count = User.objects.count()
  [...]
NotSupportedError: Mock database tried to execute SQL for User model.

If you want to run your tests without a database, you need to tell Django to skip the tests that need a database. You can do that by putting a skip decorator on the test classes or test methods that need a database.

@skipIfDBFeature('is_mocked')
class TestApi(TestCase):
    def test_create(self):
        start_count = User.objects.count()

        User.objects.create(username='bob')
        final_count = User.objects.count()

        self.assertEqual(start_count + 1, final_count)

Installation

pip install django_mock_queries

Contributing

Anything missing or not functioning correctly? PRs are always welcome! Otherwise, you can create an issue so someone else does it when time allows.

You can follow these guidelines:

  • Fork the repo from this page
  • Clone your fork:
git clone https://github.com/{your-username}/django-mock-queries.git
cd django-mock-queries
git checkout -b feature/your_cool_feature
  • Implement feature/fix
  • Add/modify relevant tests
  • Run tox to verify all tests and flake8 quality checks pass
tox
  • Commit and push local branch to your origin
git commit . -m "New cool feature does this"
git push -u origin HEAD
  • Create pull request

TODO

  • Add docs as a service like readthedocs with examples for every feature
  • Add support for missing QuerySet methods/Field lookups/Aggregation functions:
    • Methods that return new QuerySets: annotate, reverse, none, extra, raw
    • Methods that do not return QuerySets: bulk_create, in_bulk, as_manager
    • Field lookups: search
    • Aggregation functions: StdDev, Variance

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

django_mock_queries-2.3.0.tar.gz (20.5 kB view details)

Uploaded Source

Built Distribution

django_mock_queries-2.3.0-py2.py3-none-any.whl (20.4 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file django_mock_queries-2.3.0.tar.gz.

File metadata

  • Download URL: django_mock_queries-2.3.0.tar.gz
  • Upload date:
  • Size: 20.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for django_mock_queries-2.3.0.tar.gz
Algorithm Hash digest
SHA256 3cc9c3922a1438ea7c318d61269ff9239b696d1d7c2ce4ebfa8cec3d1cf9b970
MD5 6bf9d12a7522eb09cec7168a056cd54c
BLAKE2b-256 819ec8cb870abc00d8bc92c719f699ce988c4105501be7c67232af742eeb2085

See more details on using hashes here.

File details

Details for the file django_mock_queries-2.3.0-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for django_mock_queries-2.3.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 71c538e0f41d10942ccdcabc450a25234875086ff91134b6bad62e08e1d21db1
MD5 753b3740a24563fe7d685e03c3a3463a
BLAKE2b-256 97064f413dcd1f914f8c569704eee26cdabd12f3bc8eadfb77fde197848ab40b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page