Skip to main content

Reproducible and efficient diffusion kurtosis imaging in Python.

Project description

> рџ’Ў Instead of the code in this repository, it is recommended to use the [non-negativity-constrained](https://doi.org/10.1016/j.neuroimage.2019.116405) diffusion kurtosis imaging available in, for example, [DIPY](https://github.com/dipy/dipy).

# dkmri.py

dkmri.py stands for diffusion kurtosis magnetic resonance imaging in Python. It is a Python package for estimating diffusion and kurtosis tensors from diffusion-weighted magnetic resonance data. The estimation is performed using regularized non-linear optimization informed by a fully-connected feed-forward neural network that is trained to learn the mapping from data to kurtosis metrics. Details can be found in the [arXiv preprint](https://arxiv.org/abs/2203.07327) and [source code](https://github.com/kerkelae/dkmri/blob/main/dkmri/dkmri.py).

This software can be used from the command line or in a Python interpreter.

  • The command-line interface does not require any knowledge about Python.

  • Python interface is for people comfortable with basic Python programming.

## Installation

First, make sure you have installed [Python](https://www.python.org/downloads/).

If you just want to use the command-line interface, the recommended way of installing dkmri.py is to use [pipx](https://github.com/pypa/pipx/#install-pipx):

` pipx install dkmri `

pipx automatically creates an isolated environment in which the dependencies are installed.

If you want to use the Python interface, you can use [pip](https://pip.pypa.io/en/stable/) (you should install dkmri.py in an isolated environment using [venv](https://docs.python.org/3/library/venv.html) or [conda](https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html) to avoid dependency issues):

` pip install dkmri `

## Usage example

### Command-line interface

The command for using dkmri.py is

` dkmri.py data bvals bvecs optional-arguments `

where data, bvals, and bvecs are the paths of the files containing the diffusion-weighted data, b-values, and b-vectors, and optional-arguments is where to define things such as which parameter maps to save.

For example, a command for computing a mean kurtosis map from data.nii.gz and saving it in mk.nii.gz could be

` dkmri.py data.nii.gz bvals.txt bvecs.txt -mask mask.nii.gz -mk mk.nii.gz `

To see a full description of the arguments, execute the following:

` dkmri.py -h `

### Python interface

See the [example notebook](https://github.com/kerkelae/dkmri/blob/main/docs/example.ipynb).

## Support

If you have questions, found bugs, or need help, please open an [issue on Github](https://github.com/kerkelae/dkmri/issues).

## Citation

If you find this repository useful in work that leads to a scientific publication, please cite the [arXiv preprint](https://arxiv.org/abs/2203.07327).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dkmri_WIN-0.1.3.tar.gz (14.9 kB view details)

Uploaded Source

Built Distribution

dkmri_WIN-0.1.3-py3-none-any.whl (14.1 kB view details)

Uploaded Python 3

File details

Details for the file dkmri_WIN-0.1.3.tar.gz.

File metadata

  • Download URL: dkmri_WIN-0.1.3.tar.gz
  • Upload date:
  • Size: 14.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.12

File hashes

Hashes for dkmri_WIN-0.1.3.tar.gz
Algorithm Hash digest
SHA256 8e5afa8ecb83c8355a541d1a386647adc65a2ad765d02083f760cc1fe638a37b
MD5 f3eae7fea25ebe1b0bd0ad634b3ff1fe
BLAKE2b-256 9e5b611bb1be31186ef747754852fab4e07bdf40032a0898255f176bc22486bd

See more details on using hashes here.

File details

Details for the file dkmri_WIN-0.1.3-py3-none-any.whl.

File metadata

  • Download URL: dkmri_WIN-0.1.3-py3-none-any.whl
  • Upload date:
  • Size: 14.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.12

File hashes

Hashes for dkmri_WIN-0.1.3-py3-none-any.whl
Algorithm Hash digest
SHA256 44062c744f92782faa28c5f6ec14ffd12b7373fb4899a1e71aa1404059a0df89
MD5 314e90f8477541bd4bad85e06f68b39d
BLAKE2b-256 9085cc0c664da6c51e85d8f6daa6d8416a3b13f4863a2a27edb0270c303702cd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page