model to identify tv sizes using images
Project description
dlg-home-content
setup environment
-
conda env create -f environment.yml
-
install detectron2 from source
-
cpu version
> conda install pytorch torchvision cpuonly -c pytorch
> python -m pip install detectron2 -f \
https://dl.fbaipublicfiles.com/detectron2/wheels/cpu/torch1.6/index.html
> update environment `conda env update --file environment.yml`
- for other gpu versions, use this
CLI commands available
- convert labelme2coco
labelme2coco --labelme_json_location 'data/processed_tv_annotations_v1/' --labels_loc "assets/keypoints.yml" --save_json "data/keypoints/" --train_ratio 0.9 --seed 50
- train using custom dataset
We need to define three config files
- base cfg file name available on detectron. check
detectron/configs
for examples. - cfg file which contains modified params . check
configs
folder for specific examples - data_cfg which has dataset and keypoints related params. For example
assets/datasets.yml
# normal instance segmentation
custom_train --base_cfg 'COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml' --cfg 'configs/mask_only_exp1.yml' --data_cfg "assets/datasets.yml"
# instance segmentation with keypoints
custom_train --base_cfg 'COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x.yaml' --cfg 'configs/keypoint_mask_on_exp1.yml' --data_cfg "assets/datasets.yml"
Inference
LOGO Detection
Download latest inference file from here
from dlg_home_content.tv_detection import InferLogo
config = '../assets/e2e_infer.yml
model = InferLogo(config)
model.predict(img_loc, visualize=True)
Inference for Keypoint Detetion
Download weight files and config files from [here] (https://fractalanalytic-my.sharepoint.com/:u:/g/personal/sindhura_k_fractal_ai/EXCaFSHWv3hMo99lvfP4zKIBLBO8dlnWzY7iUAFWYiXHKA?e=23XheZ)
#for inner keyoint detection
from dlg_home_content.inference_pipeline import KeypointInference
config = '../assets/e2e_infer.yml'
#kp_type in ['kp_inner_edge','kp_outer_edge','kp_sticky_note']
model_inner = KeypointInference(config, kp_type='kp_inner_edge')
predicted_keyoints = model_inner.predict_keypoints(img_loc, visualize=True)
End-to-End Inference pipeline
from dlg_home_content.e2e_inference import E2EInference
config = '../assets/e2e_infer.yml'
final_pipeline = E2EInference(config)
result = final_pipeline.infer(img_loc, 8, 8, True)
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
dlg_home_content-0.0.8.tar.gz
(32.8 kB
view details)
Built Distribution
File details
Details for the file dlg_home_content-0.0.8.tar.gz
.
File metadata
- Download URL: dlg_home_content-0.0.8.tar.gz
- Upload date:
- Size: 32.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.3.1.post20200810 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c67c6ce90f9597b4e38a918e9216c8a5c0066d00ea4c18e866a0f1562f31ada4 |
|
MD5 | f9b5aea607031393bfa0aa20ce8888db |
|
BLAKE2b-256 | a659e120babe25e38feac0fa7b914ff7951c253fb737f3439f648277842360de |
File details
Details for the file dlg_home_content-0.0.8-py3-none-any.whl
.
File metadata
- Download URL: dlg_home_content-0.0.8-py3-none-any.whl
- Upload date:
- Size: 36.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.3.1.post20200810 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3804d66350f27b9cd51dba23a5f038d46925e1622196297c0b2d2edc06adf1b2 |
|
MD5 | ac56f93d0df39ff933325f27226b574b |
|
BLAKE2b-256 | 70940ca210beed4b3baa38bf3879010a74bffc113adb2eab0a959eed1c280440 |