Skip to main content

DeepLink Inference Extension

Project description

介绍

dlinfer提供了一套将国产硬件接入大模型推理框架的解决方案。 对上承接大模型推理框架,对下在eager模式下调用各厂商的融合算子,在graph模式下调用厂商的图引擎。 在dlinfer中,我们根据主流大模型推理框架与主流硬件厂商的融合算子粒度,定义了大模型推理的融合算子接口。

这套融合算子接口主要功能:

  1. 将对接框架与对接厂商融合算子在适配工程中有效解耦;
  2. 同时支持算子模式和图模式;
  3. 图模式下的图获取更加精确匹配,提高最终端到端性能;
  4. 同时支持LLM推理和VLM推理。

目前,我们正在全力支持LMDeploy适配国产芯片,包括华为,沐曦,寒武纪等。

架构介绍

组件介绍

  • op interface: 大模型推理算子接口,对齐了主流推理框架以及各个厂商的融合算子粒度。
    • 算子模式:在pytorch的eager模式下,我们将通过op interface向下分发到厂商kernel。由于各个厂商对于参数的数据排布有不同的偏好,所以在这里我们并不会规定数据排布,但是为了多硬件的统一适配,我们将会统一参数的维度信息。
    • 图模式:在极致性能的驱动下,在一些硬件上的推理场景中需要依靠图模式。我们利用Pytorch2中的Dynamo编译路线,通过统一的大模型推理算子接口,获取较为粗粒度算子的计算图,并将计算图通过IR转换后提供给硬件厂商的图编译器。
  • framework adaptor: 将大模型推理算子接口加入推理框架中,并且对齐算子接口的参数。
  • kernel adaptor: 吸收了大模型推理算子接口参数和硬件厂商融合算子参数间的差异。

安装方法

pip安装

pip install dlinfer-ascend

目前只有华为支持pip安装。沐曦请使用源码安装。

源码安装

华为Atlas 800T A2

  1. 在Atlas 800T A2上依赖torch和torch_npu,运行以下命令安装torch、torch_npu及其依赖。

    pip3 install -r requirements/ascend/full.txt
    
  2. 完成上述准备工作后,使用如下命令即可安装dlinfer。

    cd /path_to_dlinfer
    DEVICE=ascend python3 setup.py develop
    

沐曦C500

  1. 沐曦软件栈请自行联系沐曦相关人员。

  2. 沐曦版本的dlinfer安装命令如下:

    cd /path_to_dlinfer
    DEVICE=maca python3 setup.py develop
    

支持模型框架列表

LMDeploy

华为Atlas 800T A2 沐曦C500 寒武纪云端智能加速卡(开发中)
bf16(eager) w4a16(eager) bf16(graph)
InternLM2.5-7B/20B
InternLM2-7B/20B
InternVL2-2B
InternVL1-5 -
Llama3(.1)-8B
Mixtral8x7B X
Qwen2(.5)-7B X
Qwen2-57B-A14B X -
CogVLM X -
CogVLM2 X -
glm-4v-9b - - -

‘√’代表测试通过,‘X’代表不支持,‘-’代表未测试

使用LMDeploy

只需要指定pytorch engine后端为ascend/maca,不需要其他任何修改即可。详细可参考lmdeploy文档。

[!CAUTION] 沐曦环境下必须把PytorchEnginConfig中的block_size设为256

示例代码如下:

import lmdeploy
from lmdeploy import PytorchEngineConfig
if __name__ == "__main__":
    pipe = lmdeploy.pipeline("/path_to_model",
                            backend_config = PytorchEngineConfig(tp=1,
                            cache_max_entry_count=0.4, device_type="ascend", eager_mode=True))
    question = ["Shanghai is", "Please introduce China", "How are you?"]
    response = pipe(question, request_output_len=256, do_preprocess=False)
    for idx, r in enumerate(response):
        print(f"Q: {question[idx]}")
        print(f"A: {r.text}")
        print()

[!TIP] 图模式已经支持了Atlas 800T A2。 用户可以在离线模式下设定PytorchEngineConfig中的eager_mode=False来开启图模式,或者设定eager_mode=True来关闭图模式。 在线模式下默认开启图模式,请添加--eager-mode来关闭图模式。 (启动图模式需要事先source /usr/local/Ascend/nnal/atb/set_env.sh)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

File details

Details for the file dlinfer_ascend-0.1.2-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for dlinfer_ascend-0.1.2-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e0e7767e810f0bef466472d0f9148e83dd0a725ac2b052abf0fac4d639e48397
MD5 08039bd5c5686f9af0b95e439af56010
BLAKE2b-256 7e65114aed8ee451c119c8e6c9ef9065d5a8a14fbcdbcbfc0ee519972e19f1be

See more details on using hashes here.

File details

Details for the file dlinfer_ascend-0.1.2-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for dlinfer_ascend-0.1.2-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f98941ba04ab85831b6b7e67567cf3e85dd6432c64d3724d1cb84127827223ea
MD5 90ca0163d8109793556874f82fbeb35e
BLAKE2b-256 194952ff15c4c500f631ef43cc00dce96870aeec11534859b534b5b45ec850f5

See more details on using hashes here.

File details

Details for the file dlinfer_ascend-0.1.2-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for dlinfer_ascend-0.1.2-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e4a4f70d1c598643ae84f2b566048fe7a44ba79207bfbfa28f471b7b88564e02
MD5 8f5863b2d609d3fcdae6b71651427778
BLAKE2b-256 833eb9b71989d4ce065619aab663f10e263f06ad0266262e352f07984afcfbc6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page