Skip to main content

I/O profiler for deep learning python apps. Specifically for dlio_benchmark.

Project description

DLIO Profiler Build and Test Coverage Status Documentation Status

DLIO Profiler v0.0.7

A multi-level profiler for capturing application functions and low-level system I/O calls from deep learning workloads.

Requirements for profiler

  1. Python > 3.7
  2. pybind11

Requirements for analyzer

  1. bokeh>=2.4.2
  2. pybind11
  3. zindex_py
  4. pandas>=2.0.3
  5. dask>=2023.5.0
  6. distributed
  7. numpy>=1.24.3
  8. pyarrow>=12.0.1
  9. rich>=13.6.0
  10. python-intervals>=1.10.0.post1
  11. matplotlib>=3.7.3

Build DLIO Profiler with pip

Users can easily install DLIO profiler using pip. This is the way most python packages are installed. This method would work for both native python environments and conda environments.

From source

    git clone git@github.com:hariharan-devarajan/dlio-profiler.git
    cd dlio-profiler
    # You can skip this for installing the dev branch.
    # for latest stable version use master branch.
    git checkout tags/<Release> -b <Release>
    pip install .

From Github

DLP_VERSION=dev
pip install git+https://github.com/hariharan-devarajan/dlio-profiler.git@${DLP_VERSION}

For more build instructions check here

Usage

    from dlio_profiler.logger import dlio_logger, fn_interceptor
    log_inst = dlio_logger.initialize_log(logfile=None, data_dir=None, process_id=-1)
    dlio_log = fn_interceptor("COMPUTE")

    # Example of using function decorators
    @dlio_log.log
    def log_events(index):
        sleep(1)

    # Example of function spawning and implicit I/O calls
    def posix_calls(val):
        index, is_spawn = val
        path = f"{cwd}/data/demofile{index}.txt"
        f = open(path, "w+")
        f.write("Now the file has more content!")
        f.close()
        if is_spawn:
            print(f"Calling spawn on {index} with pid {os.getpid()}")
            log_inst.finalize() # This need to be called to correctly finalize DLIO Profiler.
        else:
            print(f"Not calling spawn on {index} with pid {os.getpid()}")

    # NPZ calls internally calls POSIX calls.
    def npz_calls(index):
        # print(f"{cwd}/data/demofile2.npz")
        path = f"{cwd}/data/demofile{index}.npz"
        if os.path.exists(path):
            os.remove(path)
        records = np.random.randint(255, size=(8, 8, 1024), dtype=np.uint8)
        record_labels = [0] * 1024
        np.savez(path, x=records, y=record_labels)

    def main():
        log_events(0)
        npz_calls(1)
        with get_context('spawn').Pool(1, initializer=init) as pool:
            pool.map(posix_calls, ((2, True),))
        log_inst.finalize()


    if __name__ == "__main__":
        main()

For this example, as the DLIO_PROFILER_CPP_INIT do not pass log file or data dir, we need to set DLIO_PROFILER_LOG_FILE and DLIO_PROFILER_DATA_DIR. By default the DLIO Profiler mode is set to FUNCTION. Example of running this configurations are:


    # the process id, app_name and .pfw will be appended by the profiler for each app and process.
    # name of final log file is ~/log_file-<APP_NAME>-<PID>.pfw
    DLIO_PROFILER_LOG_FILE=~/log_file
    # Colon separated paths for including for profiler
    DLIO_PROFILER_DATA_DIR=/dev/shm/:/p/gpfs1/$USER/dataset:$PWD/data
    # Enable profiler
    DLIO_PROFILER_ENABLE=1

For more example check Examples.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dlio_profiler_py-0.0.7.tar.gz (4.4 MB view details)

Uploaded Source

Built Distribution

dlio_profiler_py-0.0.7-cp39-cp39-manylinux_2_24_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ x86-64

File details

Details for the file dlio_profiler_py-0.0.7.tar.gz.

File metadata

  • Download URL: dlio_profiler_py-0.0.7.tar.gz
  • Upload date:
  • Size: 4.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.12

File hashes

Hashes for dlio_profiler_py-0.0.7.tar.gz
Algorithm Hash digest
SHA256 7f9670468d61c1933d30ab0d564f4126fe5b1d2e50a77c464c3f97aef6d8833e
MD5 aad0e2914ab69774eb1af399a3439abc
BLAKE2b-256 63e1e90cb0d1975c378947f8d2fe1eddab09bbe5b58ead233473b83e00d9236e

See more details on using hashes here.

File details

Details for the file dlio_profiler_py-0.0.7-cp39-cp39-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for dlio_profiler_py-0.0.7-cp39-cp39-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 07bc7e5b54418b271821c83b8cfebd25683277df911162c428e528229e55c249
MD5 5b49fe3cd3a5b243431445d0ee524a71
BLAKE2b-256 5861197a047f5a0784a0459391d172404bdbcf0b04a26a81dca99245df3a6c62

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page