Skip to main content

Lightweight data-centric framework for working with scientific data

Project description

DLite

A lightweight data-centric framework for semantic interoperability

PyPi CI tests Documentation DOI

DLite is a C implementation of the SINTEF Open Framework and Tools (SOFT), which is a set of concepts and tools for using data models (aka Metadata) to efficiently describe and work with scientific data.

DLite overview

The core of DLite is a framework for formalised representation of data described by data models (called Metadata or Entity in DLite). On top of this, DLite has a plugin system for various representations of the data in different formats and storages, as well as bindings to popular languages like Python, mappings to ontological concepts for enhanced semantics and a set of tools.

Documentation

The official documentation for DLite can be found on https://sintef.github.io/dlite/.

Installation

DLite is available on PyPI and can be installed with pip

pip install dlite-python[full]

The bracket [full] is optional, but ensures that you install all optional dependencies together with DLite. Without [full] you get a minimal DLite installation that only depends on NumPy. This would disable most storage plugins, except for the built-in "json", "bson" and "rdf" (when compiled against Redland librdf). For alternative installation methods, see the installation instructions.

Usage

All data in DLite is represented by a instance, which is described by a simple data model (aka Metadata). An Instance is identified by a unique UUID and have a set of named dimensions and properties. The dimensions are used to describe the shape of multi-dimensional properties.

DLite Metadata are identified by an URI and have an (optional) human readable description. Each dimension is given a name and description (optional) and each property is given a name, type, shape (optional), unit (optional) and description (optional). The shape of a property refers to the named dimensions. Foe example, a Metadata for a person serialised in YAML may look like:

uri: http://onto-ns.com/meta/0.1/Person
description: A person.
dimensions:
  nskills: Number of skills.
properties:
  name:
    type: string
    description: Full name.
  age:
    type: float32
    unit: year
    description: Age of person.
  skills:
    type: string
    shape: [nskills]
    description: List of skills.

Assume that you have file Person.yaml with this content. In Python, you can load this Metadata with

import dlite
Person = dlite.Instance.from_location("yaml", "Person.yaml", options="mode=r")

where the first argument is the "driver", i.e. the name of storage plugin to use for loading the Metadata. The options argument is optional. By providing "mode=r" you specify that the storage is opened in read-only mode.

You can verify that Person is a Metadata

>>> isinstance(Person, dlite.Metadata)
True

We can create an instance of Person with

holmes = Person(
    dimensions={"nskills": 4},
    properties={
      "name": "Sherlock Holmes",
      "skills": ["observing", "chemistry", "violin", "boxing"],
    }
)

The dimensions argument must be supplied when a Metadata is instantiated. It ensures that the shape of all properties are initialised consistently. The properties argument is optional. By specifying it, we initialise the properties to the provided values (otherwise, they will be initialised to zero).

In this case we didn't initialised the age

>>> holmes.age
0.0
>>> holmes.age = 34  # Assign the age

If you have Pint installed, you can also specify or access the age as a quantity with unit

>>> holmes.q.age = "34year"
>>> holmes.q.age
<Quantity(34, 'year')>
>>> holmes.q.age.to("century").m
0.34

We can view (a JSON representation of) the instance with

>>> print(holmes)
{
  "uuid": "314ac1ad-4a7e-477b-a56c-939121355112",
  "meta": "http://onto-ns.com/meta/0.1/Person",
  "dimensions": {
    "nskills": 4
  },
  "properties": {
    "Sherlock Holmes" {
      "age": 34.0,
      "skills": [
        "observing",
        "chemistry",
        "violin",
        "boxing"
      ]
    }
  }
}

The instance can also be stored using the save() method

holmes.save("yaml", "holmes.yaml", "mode=w")

which will produce the a YAML file with the following content

8cbd4c09-734d-4532-b35a-1e0dd5c3e8b5:
  meta: http://onto-ns.com/meta/0.1/Person
  dimensions:
    nskills: 4
  properties:
    Sherlock Holmes:
      age: 34.0
      skills:
      - observing
      - chemistry
      - violin
      - boxind

This was just a brief example. There is much more to DLite as will be revealed in the documentation.

License

DLite is licensed under the MIT license. However, it include a few third party source files with other permissive licenses. All of these should allow dynamic and static linking against open and propritary codes. A full list of included licenses can be found in LICENSES.txt.

Acknowledgment

In addition from internal funding from SINTEF and NTNU this work has been supported by several projects, including:

  • AMPERE (2015-2020) funded by Forskningsrådet and Norwegian industry partners.
  • FICAL (2015-2020) funded by Forskningsrådet and Norwegian industry partners.
  • Rational alloy design (ALLDESIGN) (2018-2022) NTNU internally funded project.
  • SFI Manufacturing (2015-2023) funded by Forskningsrådet and Norwegian industry partners.
  • SFI PhysMet (2020-2028) funded by Forskningsrådet and Norwegian industry partners.
  • OntoTrans (2020-2024) that receives funding from the European Union’s Horizon 2020 Research and Innovation Programme, under Grant Agreement n. 862136.
  • OpenModel (2021-2025) that receives funding from the European Union’s Horizon 2020 Research and Innovation Programme, under Grant Agreement n. 953167.
  • DOME 4.0 (2021-2025) that receives funding from the European Union’s Horizon 2020 Research and Innovation Programme, under Grant Agreement n. 953163.
  • VIPCOAT (2021-2025) that receives funding from the European Union’s Horizon 2020 Research and Innovation Programme, under Grant Agreement n. 952903.
  • MEDIATE (2022-2025) that receives funding from the RCN, Norway; FNR, Luxenburg; SMWK Germany via the M-era.net programme, project9557,
  • MatCHMaker (2022-2026) that receives funding from the European Union’s Horizon 2020 Research and Innovation Programme, under Grant Agreement n. 101091687.

DLite is developed with the hope that it will be a delight to work with.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dlite_python-0.5.23.tar.gz (7.8 kB view details)

Uploaded Source

Built Distributions

DLite_Python-0.5.23-cp312-cp312-win_amd64.whl (661.3 kB view details)

Uploaded CPython 3.12 Windows x86-64

DLite_Python-0.5.23-cp312-cp312-manylinux_2_28_x86_64.whl (23.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ x86-64

DLite_Python-0.5.23-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (20.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

DLite_Python-0.5.23-cp311-cp311-win_amd64.whl (659.9 kB view details)

Uploaded CPython 3.11 Windows x86-64

DLite_Python-0.5.23-cp311-cp311-musllinux_1_1_x86_64.whl (7.2 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

DLite_Python-0.5.23-cp311-cp311-musllinux_1_1_i686.whl (7.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

DLite_Python-0.5.23-cp311-cp311-manylinux_2_28_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

DLite_Python-0.5.23-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

DLite_Python-0.5.23-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (19.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

DLite_Python-0.5.23-cp310-cp310-win_amd64.whl (659.1 kB view details)

Uploaded CPython 3.10 Windows x86-64

DLite_Python-0.5.23-cp310-cp310-musllinux_1_1_x86_64.whl (6.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

DLite_Python-0.5.23-cp310-cp310-musllinux_1_1_i686.whl (6.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

DLite_Python-0.5.23-cp310-cp310-manylinux_2_28_x86_64.whl (22.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

DLite_Python-0.5.23-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

DLite_Python-0.5.23-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (19.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

DLite_Python-0.5.23-cp39-cp39-win_amd64.whl (659.0 kB view details)

Uploaded CPython 3.9 Windows x86-64

DLite_Python-0.5.23-cp39-cp39-musllinux_1_1_x86_64.whl (6.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

DLite_Python-0.5.23-cp39-cp39-musllinux_1_1_i686.whl (6.7 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

DLite_Python-0.5.23-cp39-cp39-manylinux_2_28_x86_64.whl (22.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

DLite_Python-0.5.23-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

DLite_Python-0.5.23-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (18.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

DLite_Python-0.5.23-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (10.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

DLite_Python-0.5.23-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (10.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

DLite_Python-0.5.23-cp38-cp38-win_amd64.whl (659.1 kB view details)

Uploaded CPython 3.8 Windows x86-64

DLite_Python-0.5.23-cp38-cp38-musllinux_1_1_x86_64.whl (6.2 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

DLite_Python-0.5.23-cp38-cp38-musllinux_1_1_i686.whl (6.5 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

DLite_Python-0.5.23-cp38-cp38-manylinux_2_28_x86_64.whl (22.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

DLite_Python-0.5.23-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

DLite_Python-0.5.23-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (18.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

DLite_Python-0.5.23-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (9.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

DLite_Python-0.5.23-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (10.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

File details

Details for the file dlite_python-0.5.23.tar.gz.

File metadata

  • Download URL: dlite_python-0.5.23.tar.gz
  • Upload date:
  • Size: 7.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for dlite_python-0.5.23.tar.gz
Algorithm Hash digest
SHA256 1e918e7c39db74bfc77bd43d233272e5f378a18eb643d9eb03feed3c6765dc91
MD5 1482787094de8f03fb099197a12233f0
BLAKE2b-256 ad4ce975ceda65fed144f80cf914be5791fae3a4490ecf1f61cd0cb7aa1c5158

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.23-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.23-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 c0fc78c79e4d2ffb70bfe83d69c3e9ad29e1f6b6ef33340933c5f268b84bced4
MD5 d9b90cdae7de53e612952bb7c6f626a9
BLAKE2b-256 8b4219b36764d3cdc457e1c67c7bf294c89411ea00f4a687b0e36f5b1819b4ca

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.23-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.23-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 8cf82a6c66f347f02105be089204e78f0841ebc43fb23c0aac2a231055602954
MD5 36cd7665a61e1e08aab4386259ead6b6
BLAKE2b-256 fc1857df324d3d16ef542b9b8927f94c14913f5084369206e02c9070ff7247f0

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.23-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.23-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 359036b7259b6cd623b669c07e19fe2864e6253ef9bd72c922ee79fd58cc68a0
MD5 7fb0fa9f6a5bc7bddd74d55add2fb66f
BLAKE2b-256 7e30ee44a259a5ea28bd7b1fed0514b8d172542c7c3931001737977684fa175f

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.23-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.23-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 b0fdaffc26eb7d9ddb70d562751c51d6ef8931b5d05aa0d698bcc29ceaff230b
MD5 8c89fd4b1a44f4c8d8c5c565e617ee44
BLAKE2b-256 f0f19e37eaaa1fc77af9e6960c2625a98011be250d2197f099873dd779a5698c

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.23-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.23-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 9d48dfb14bf07eada3a03de838ca57d787793e244209160ab1edc129c54a8364
MD5 39245356b5e7055bb2141c50a939cffc
BLAKE2b-256 2c61f7821278db77347dbd9d543a37b73e79b84424821d2d68d850103b43bbbf

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.23-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.23-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 40ae549930272582720adf77d4792df7baf5e9fa345b6d3105fcd3a890b1aeb6
MD5 8da71b791febb280a1bdf2b580cdc72a
BLAKE2b-256 6c0cc360494ffd0a6cb87734ba0761d3e904f9b349ebd15193cc52dc89c35927

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.23-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.23-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 d9e60b28e800470d7f04ffcff5d474eabd2b053201f5c765d9c5d4e7ece2f352
MD5 65d85d78cd329732d414389a71c033bc
BLAKE2b-256 a9cc84c8554ac8b2d551e6167a542fa81cdb2954e3f73a0c5d90058d0d8cc1dd

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.23-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.23-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5f1bad119e7a90a6ba6ee5291bbf1c70abb185e310eea6d7ba4e7bfd3f8d39b8
MD5 60b34077719d99cc676fd68de6790ae2
BLAKE2b-256 150e8f710e1b83f93955651113449129f35012ccabe710e1ce368b1de66881ac

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.23-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.23-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 fbc0d4a50b4c007279478175cc40f36ee364378bb1ba645276c8f539f5810e20
MD5 be84938a9c2499aeec29006fdd812908
BLAKE2b-256 21de994085e4d87b5b2c3e588d6262881868e0f54803f5c433469a6926e6b70e

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.23-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.23-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 b2e44d0bb2dcd86cc2199f8fccd7d2db877fd258927e5f489df53a92516a1e47
MD5 5282ce8b8af0b9e7e482ec3f4435e4a8
BLAKE2b-256 6073f6162e670e7b42b4c1ca637202740c33e55d3a4f2769af674ca7df98de21

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.23-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.23-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 8335d779b822ebb33aa5a08a9f77121d6a52c281dc3fb12d91d55aae161086f9
MD5 d7c199d84bb1a8b99114675c642623e6
BLAKE2b-256 b90f7410f83cb909c49de41cc0092f7210800ff1f820075f427332532bd4758b

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.23-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.23-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 5b5044df2b51b92b55a096128fafaed6c3cee13527efa2e22fb94db44b04da42
MD5 32cdafe4418a80785b3bdf626f043ee2
BLAKE2b-256 bb0398fb862af58ea253501c09147fcc21986cee722cfa5b199acecb7bc49e3c

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.23-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.23-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 dda986d20ff34a701f6697db7596ac3a375cfb4bde274032364c541abd12b0ac
MD5 b2faf8b4faaad135208b8a1f75fe7bd9
BLAKE2b-256 c4fe60c2731b9f5e4e45d3278ac5fa47a02ecb3096905fe779069bdee6ba3646

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.23-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.23-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fb0b6cc4d64f91333c1fc1517a9c383c798d373f10c3d5b338a5242f5b60c36e
MD5 64317913d1b871855a662f5cdda17429
BLAKE2b-256 e4a17f66b0cedabcfea1457ae6d369ac18073d3142ea7321849317f88cd12759

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.23-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.23-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 bd1af8f646284fccf6e3563407a23e569c44a7d4e300c85744bc57106ff38214
MD5 3a9e6d7dd1a6fbc7c041447c56ce533d
BLAKE2b-256 84c10ab548633f754873d48a3a785e13d283eebb78c8c61e38398b481808052d

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.23-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.23-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 f7c88c7569451d3f93ee1cb623994b376776b01e93757cb89bb0c683dd9a7fa1
MD5 11ca5c6a420127fe0dc188fe5ee4570c
BLAKE2b-256 592a3853e97788e7e7f957c7d676dba758394e2327859c9f9e4da861121b20a0

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.23-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.23-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 2376b0ea2c442fb17a41a741639723901abe921d4481db19ce933306b79ccfb6
MD5 ebd2e0e91b65dec85e5a03c56ac352ad
BLAKE2b-256 eb0f65038c958324f6f7010df5fb9940c7251ff7566c0b0326eeb08f734cb894

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.23-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.23-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 ff42e771b50464aec3f94dabe50a4f09aea58b9c9f271df4fa44b12f6449c8fb
MD5 652291ef0e2fdd4230fa573099415651
BLAKE2b-256 36fc5bf736b12ad6d9f61240318f8cf32aaeb5719ccd016f92a2ddec895f9bbc

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.23-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.23-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 532895eac2c2b752d3fa94da6cb77478e03998aed2ba10ad0c654345e4ba835b
MD5 679f82d124dfe52e29635fcfb9f4ffca
BLAKE2b-256 4074d163b9c99a0af476370f58ce6a0bade4cbdb02ad16e5179a7b78fbab044e

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.23-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.23-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7bb0419e8846008a0f1301ffc69059ec3eee161e6af33f5ec3bb641bfb00b3d8
MD5 ac390ad8a94164d079a9f9d81f13b1b6
BLAKE2b-256 51cb921ad22646181779acbcaf21758d4449dfb5b98488214e4128ba10cc10c1

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.23-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.23-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 97dcb06fc1245071f2fdcad078ad51a8a23a9a64b33658f90d636c56eeb14d52
MD5 e613388046d3810880708fdadde796dc
BLAKE2b-256 22e6865330204ff39c113371c680b54e56609216a888005f593212839a03c16c

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.23-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.23-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 9c4182f53dd48bfe54b943bd874ee9394eaed0bc02b2fd2a9be5842ca6f31538
MD5 a02eab98210da8f19511dcb372e91f88
BLAKE2b-256 fb147d0629ccbff7b9eb577672ec2b8f7ca1d18857dc580e56d4d0d093454dc9

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.23-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.23-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 ecfb648ab7c06d6aa476ed82e43985fc3e63223c5a4fac3d2de75438111a11da
MD5 6034d46e79c59515b565943b993c1535
BLAKE2b-256 fee1afc3c0c91000bd791b2f5ee33abd69843087d860cbce72493214fd7d47b7

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.23-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.23-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 44968b179d0ac38029f6ec25c1c65340f170e25bdd8eddce7e857bd8044f7a12
MD5 0f2d1084783197fe08d277722622a2f1
BLAKE2b-256 cd7c15abde097d589bf5c6c317be2823a2ed3c45c180e2e9630c2105aca15a31

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.23-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.23-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 31928faf0e55732977ac18b67a7ea6621d9c0fa666e9beb38b388383bef6f1eb
MD5 c0f966774ccba2839bd3e35f4c987061
BLAKE2b-256 bddfdca2e01248424f0dadd850344ce3adf814c895fb373020114259e2dcbe7e

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.23-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.23-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 16bb30617b826d91a33403cd0c1d1712b5d981c0654260bb08e47d894276702d
MD5 25f15b4b37328b851c517f286c215a40
BLAKE2b-256 edab67a69741813708534a48528058e02ba7c2dc5c64dd7b3d48937094ddbba5

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.23-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.23-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 dafc6a60e9b8d9fb7bc96594a091cf587bd084c3a2b7129314453788381fb0c7
MD5 664686f9b634155603288360825c23ce
BLAKE2b-256 41da62662097c100ec571a12dee208156bc0fd790cc6142218d2939dc54b7755

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.23-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.23-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 70bce15c8c0e9bb775f6423da815c230b831baa8c87cd82e9f75ce94f9f2db02
MD5 c690a59488be9b76c3053f03a0bff83a
BLAKE2b-256 34d99397e970e09f48ab7c7f7a73e24f41a897a1adf3c1f0aa7c55d4b19124ef

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.23-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.23-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 0d47d06715e2b2431a4664cf74c281caeb407bb412618f63c317d45f49e9ae92
MD5 6bb6bbaf88d24ea17dc123684acfb3ae
BLAKE2b-256 8a435b76e8f12b1904f88f08f3d7376d6cf066b3090b77f91720c6f8fea1fd34

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.23-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.23-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 4826eb07feae26ae2c0e641ecaffb2d15e8ba0cdb501c9393ee1ffb3c46ab863
MD5 6809f77dbb246520c47385970aefad51
BLAKE2b-256 a07b85c58db5517aa655fcce3aa1ed5e944ae918bcafeeef289003032a336fd6

See more details on using hashes here.

File details

Details for the file DLite_Python-0.5.23-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for DLite_Python-0.5.23-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 445d69172839c8726b05c1094a2f092b5b6afcca16d06913f9bea8f16b1ca7f1
MD5 5ede36c9f86b47c3db005bf1198a3f9b
BLAKE2b-256 45c746f1727178fbd5972f33dcc67da8e3fa31bc2f32d04c47f634f7db927e98

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page