Skip to main content

Deep Learning for Proteomics

Project description

DLOmix

Docs Build PyPI

DLOmix is a Python framework for Deep Learning in Proteomics. Initially built on top of TensorFlow/Keras, support for PyTorch can however be integrated once the main API is established.

Usage

Experiment a simple retention time prediction use-case using Google Colab    Colab

A version that includes experiment tracking with Weights and Biases is available here    Colab

Resources Repository

More learning resources can be found in the dlomix-resources repository.

Installation

Run the following to install:

$ pip install dlomix

If you would like to use Weights & Biases for experiment tracking and use the available reports for Retention Time under /notebooks, please install the optional wandb python dependency with dlomix by running:

$ pip install dlomix[wandb]

General Overview

  • data: structures for modeling the input data, processing functions, and feature extractions based on Hugging Face datasets Dataset and DatasetDict
  • eval: classes for evaluating models and reporting results
  • layers: custom layers used for building models, based on tf.keras.layers.Layer
  • losses: custom losses to be used for training with model.fit()
  • models: common model architectures for the relevant use-cases based on tf.keras.Model to allow for using the Keras training API
  • pipelines: an exemplary high-level pipeline implementation
  • reports: classes for generating reports related to the different tasks
  • constants.py: constants and configuration values

Use-cases

  • Retention Time Prediction:

    • a regression problem where the retention time of a peptide sequence is to be predicted.
  • Fragment Ion Intensity Prediction:

    • a multi-output regression problem where the intensity values for fragment ions are predicted given a peptide sequence along with some additional features.

To-Do

Functionality:

  • integrate prosit
  • integrate hugging face datasets
  • extend data representation to include modifications
  • add PTM features
  • add residual plots to reporting, possibly other regression analysis tools
  • output reporting results as PDF
  • refactor reporting module to use W&B Report API (Retention Time)
  • extend pipeline for different types of models and backbones
  • extend pipeline to allow for fine-tuning with custom datasets

Package structure:

  • integrate deeplc.py into models.py, preferably introduce a package structure (e.g. models.retention_time)
  • add references for implemented models in the ReadMe
  • introduce formatting and precommit hooks
  • plan documentation (sphinx and readthedocs)
  • refactor following best practices for cleaner install

Developing DLOmix

To install dlomix, along with the tools needed to develop and run tests, run the following command in your virtualenv:

$ pip install -e .[dev]

References:

[Prosit]

[1] Gessulat, S., Schmidt, T., Zolg, D. P., Samaras, P., Schnatbaum, K., Zerweck, J., ... & Wilhelm, M. (2019). Prosit: proteome-wide prediction of peptide tandem mass spectra by deep learning. Nature methods, 16(6), 509-518.

[DeepLC]

[2] DeepLC can predict retention times for peptides that carry as-yet unseen modifications Robbin Bouwmeester, Ralf Gabriels, Niels Hulstaert, Lennart Martens, Sven Degroeve bioRxiv 2020.03.28.013003; doi: 10.1101/2020.03.28.013003

[3] Bouwmeester, R., Gabriels, R., Hulstaert, N. et al. DeepLC can predict retention times for peptides that carry as-yet unseen modifications. Nat Methods 18, 1363–1369 (2021). https://doi.org/10.1038/s41592-021-01301-5

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dlomix-0.1.2.tar.gz (61.4 kB view details)

Uploaded Source

Built Distribution

dlomix-0.1.2-py3-none-any.whl (69.5 kB view details)

Uploaded Python 3

File details

Details for the file dlomix-0.1.2.tar.gz.

File metadata

  • Download URL: dlomix-0.1.2.tar.gz
  • Upload date:
  • Size: 61.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for dlomix-0.1.2.tar.gz
Algorithm Hash digest
SHA256 0887d1e7b095336868da931a11f2bbb61a392fcd43c1e43147ee869f26c23a49
MD5 4bde7a95e367148d4a80fea8aed0e708
BLAKE2b-256 3373be684bb3560b9faa3c976cc6a2bd539ee821075692398334b5666f4a9c14

See more details on using hashes here.

File details

Details for the file dlomix-0.1.2-py3-none-any.whl.

File metadata

  • Download URL: dlomix-0.1.2-py3-none-any.whl
  • Upload date:
  • Size: 69.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for dlomix-0.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 76fbba709633395eab43c0ff5ff205c6c91a84f16d4d8c104a0a43a462898dba
MD5 1e15ea1bc8cdc3065c7726f370b4d12d
BLAKE2b-256 abe99bc838a4c1a4912c9f9bb55e8e7b71bfae99214f1731b138cf5dbc55c090

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page