Skip to main content

Diffusion Models Made Easy

Project description

Diffusion Models Made Easy

Diffusion Models Made Easy(dmme) is a collection of easy to understand diffusion model implementations in Pytorch.

Documentation is available at https://diffusion-models-made-easy.readthedocs.io/en/latest/

Installation

Install from pip

pip install dmme

Install for customization or development

pip install -e ".[dev]"

Install dependencies for testing

pip install dmme[tests]

Install dependencies for editing documentation

pip install dmme[docs]

Train Diffusion Models

dmme uses LightningCLI as a cli interface for training and evaluation.

You can find sample configuration file in the configs directory

Using config files you can train DDPM by running

dmme.trainer fit --config configs/ddpm/cifar10.yaml

Or you can manually specify configurations for training

dmme.trainer fit --seed_everything 1337 \
    --trainer.accelerator gpu --trainer.precision 16 --trainer.benchmark true \
    --trainer.logger=pytorch_lightning.loggers.WandbLogger \
    --trainer.logger.project="CIFAR10_Image_Generation" \
    --trainer.logger.name="DDPM" \
    --trainer.gradient_clip_val=1.0 \
    --trainer.max_steps 800_000 \
    --model LitDDPM --data CIFAR10

Supported Diffusion Models

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dmme-0.5.2.tar.gz (24.1 kB view details)

Uploaded Source

Built Distribution

dmme-0.5.2-py3-none-any.whl (35.1 kB view details)

Uploaded Python 3

File details

Details for the file dmme-0.5.2.tar.gz.

File metadata

  • Download URL: dmme-0.5.2.tar.gz
  • Upload date:
  • Size: 24.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for dmme-0.5.2.tar.gz
Algorithm Hash digest
SHA256 51a5308e2c8e96221fa1ac86c5cbe03b88327a7692d3bb107da15fe312e68376
MD5 0ac7ffdea8328f82d683dbfe24219aeb
BLAKE2b-256 bd1c8d855001920400c02d5f27809ac22465724416719b7ea4ecd48d74ea0630

See more details on using hashes here.

File details

Details for the file dmme-0.5.2-py3-none-any.whl.

File metadata

  • Download URL: dmme-0.5.2-py3-none-any.whl
  • Upload date:
  • Size: 35.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for dmme-0.5.2-py3-none-any.whl
Algorithm Hash digest
SHA256 3557c4c0980c2a2bdaf00a81a82a0b6205a826a75c3fe89de6249f737257dd33
MD5 4661c453cd73789dfca45f17b4d438b1
BLAKE2b-256 0b8e3e2b8f1ec2daf5a53f95fa9a2374e9faea42bfabf04f298644513fc73bd8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page