Skip to main content

Diffusion Models Made Easy

Project description

Diffusion Models Made Easy

Diffusion Models Made Easy(dmme) is a collection of easy to understand diffusion model implementations in Pytorch.

Getting Started

Documentation is available at https://diffusion-models-made-easy.readthedocs.io/en/latest/

Installation

Install from pip

pip install dmme

installing dmme in edit mode requires pip>=22.3, update pip by running pip install -U pip

Install for customization or development

pip install -e ".[dev]"

Install dependencies for testing

pip install dmme[tests]

Install dependencies for docs

pip install dmme[docs]

Training

Train DDPM Using LightningCLI and wandb logger with mixed precision

python scripts/trainer.py fit --config configs/ddpm/cifar10.yaml

Train DDPM from python using pytorch-lightning

from pytorch_lightning import Trainer

from pytorch_lightning.loggers import WandbLogger

from dmme import LitDDPM, DDPMSampler, CIFAR10
from dmme.ddpm import UNet


def main():
    trainer = Trainer(
        logger=WandbLogger(project="CIFAR10 Image Generation", name="DDPM"),
        gradient_clip_val=1.0,
        auto_select_gpus=True,
        accelerator="gpu",
        precision=16,
        max_steps=800_000,
    )

    ddpm = LitDDPM(
        DDPMSampler(UNet(in_channels=3), timesteps=1000),
        lr=2e-4,
        warmup=5000,
        imgsize=(3, 32, 32),
        timesteps=1000,
        decay=0.9999,
    )
    cifar10 = CIFAR10()

    trainer.fit(ddpm, cifar10)


if __name__ == "__main__":
    main()

or use the DDPMSampler class to train using pytorch

note: does not include gradient clipping, logging and checkpointing

from tqdm import tqdm

import torch
from torch.optim import Adam

from dmme import CIFAR10

from dmme.ddpm import UNet, DDPMSampler
from dmme.lr_scheduler import WarmupLR
from dmme.noise_schedules import linear_schedule


def train(timesteps=1000, lr=2e-4, clip_val=1.0, warmup=5000, max_steps=800_000):
    device = torch.device("cuda") if torch.cuda.is_available() else "cpu"

    model = UNet()
    beta = linear_schedule(timesteps=timesteps)
    sampler = DDPMSampler(model, timesteps=timesteps, beta=beta)
    sampler = sampler.to(device)

    cifar10 = CIFAR10()
    cifar10.prepare_data()
    cifar10.setup("fit")

    train_dataloader = cifar10.train_dataloader()

    optimizer = Adam(sampler.parameters(), lr=lr)
    lr_scheduler = WarmupLR(optimizer, warmup=warmup)

    steps = 0
    while steps < max_steps:
        prog_bar = tqdm(train_dataloader)
        for x_0, _ in prog_bar:
            x_0 = x_0.to(device)
            with torch.autocast("cuda" if device != "cpu" else "cpu"):
                loss = sampler.compute_loss(x_0)

            optimizer.zero_grad()
            loss.backward()

            torch.nn.utils.clip_grad_norm(sampler.parameters(), clip_val)

            optimizer.step()
            lr_scheduler.step()

            steps += 1

            prog_bar.set_postfix({"loss": loss, "steps": steps})

            if steps == max_steps:
                break


if __name__ == "__main__":
    train()

Supported Diffusion Models

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dmme-0.1.0.tar.gz (18.1 kB view details)

Uploaded Source

Built Distribution

dmme-0.1.0-py3-none-any.whl (22.0 kB view details)

Uploaded Python 3

File details

Details for the file dmme-0.1.0.tar.gz.

File metadata

  • Download URL: dmme-0.1.0.tar.gz
  • Upload date:
  • Size: 18.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.15

File hashes

Hashes for dmme-0.1.0.tar.gz
Algorithm Hash digest
SHA256 1a1c66fd7128378ed31bd0525f480063b165622fa55bb9a9f4a8faddb80b6fb1
MD5 8fef559c55d9982851f2adddb035327b
BLAKE2b-256 84ad6924140b0363a0454097fa0f51f43b4b7e07b07226244aea5d6e5d5f25a9

See more details on using hashes here.

File details

Details for the file dmme-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: dmme-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 22.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.15

File hashes

Hashes for dmme-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 fdaabcfb47b4a38d4569761207b81b0c6e4cf27cb0373e808ea68c529d9a15d6
MD5 6633644f13fcd616038822232a70c31f
BLAKE2b-256 60989d555a0998c6f309d90daa1240583a0aabfe5310106243d3e4722fe46471

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page