Skip to main content

Diffusion Models Made Easy

Project description

Diffusion Models Made Easy

Diffusion Models Made Easy(dmme) is a collection of easy to understand diffusion model implementations in Pytorch.

Getting Started

Documentation is available at https://diffusion-models-made-easy.readthedocs.io/en/latest/

Installation

Install from pip

pip install dmme

installing dmme in edit mode requires pip>=22.3, update pip by running pip install -U pip

Install for customization or development

pip install -e ".[dev]"

Install dependencies for testing

pip install dmme[tests]

Install dependencies for docs

pip install dmme[docs]

Train Diffusion Models

Train DDPM Using LightningCLI and wandb logger with mixed precision

python scripts/trainer.py fit --config configs/ddpm/cifar10.yaml

Train DDPM from python using pytorch-lightning

from pytorch_lightning import Trainer

from pytorch_lightning.loggers import WandbLogger

from dmme import LitDDPM, DDPMSampler, CIFAR10
from dmme.ddpm import UNet

from dmme.callbacks import GenerateImage


def main():
    trainer = Trainer(
        logger=WandbLogger(project="CIFAR10 Image Generation", name="DDPM"),
        callbacks=GenerateImage((3, 32, 32)),
        gradient_clip_val=1.0,
        auto_select_gpus=True,
        accelerator="gpu",
        precision=16,
        max_steps=800_000,
    )

    ddpm = LitDDPM(
        DDPMSampler(UNet(in_channels=3), timesteps=1000),
        lr=2e-4,
        warmup=5000,
        imgsize=(3, 32, 32),
        timesteps=1000,
        decay=0.9999,
    )
    cifar10 = CIFAR10()

    trainer.fit(ddpm, cifar10)


if __name__ == "__main__":
    main()

or use the DDPMSampler class to train using pytorch

note: does not include gradient clipping, logging and checkpointing

from tqdm import tqdm

import torch
from torch.optim import Adam

from dmme import CIFAR10

from dmme.ddpm import UNet, DDPMSampler
from dmme.lr_scheduler import WarmupLR


def train(timesteps=1000, lr=2e-4, clip_val=1.0, warmup=5000, max_steps=800_000):
    device = torch.device("cuda") if torch.cuda.is_available() else "cpu"

    model = UNet()

    sampler = DDPMSampler(model, timesteps=timesteps)
    sampler = sampler.to(device)

    cifar10 = CIFAR10()
    cifar10.prepare_data()
    cifar10.setup("fit")

    train_dataloader = cifar10.train_dataloader()

    optimizer = Adam(sampler.parameters(), lr=lr)
    lr_scheduler = WarmupLR(optimizer, warmup=warmup)

    steps = 0
    while steps < max_steps:
        prog_bar = tqdm(train_dataloader)
        for x_0, _ in prog_bar:
            x_0 = x_0.to(device)
            with torch.autocast("cuda" if device != "cpu" else "cpu"):
                loss = sampler.compute_loss(x_0)

            optimizer.zero_grad()
            loss.backward()

            torch.nn.utils.clip_grad_norm_(sampler.parameters(), clip_val)

            optimizer.step()
            lr_scheduler.step()

            steps += 1

            prog_bar.set_postfix({"loss": loss, "steps": steps})

            if steps == max_steps:
                break


if __name__ == "__main__":
    train()

Supported Diffusion Models

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dmme-0.2.0.tar.gz (19.4 kB view details)

Uploaded Source

Built Distribution

dmme-0.2.0-py3-none-any.whl (24.4 kB view details)

Uploaded Python 3

File details

Details for the file dmme-0.2.0.tar.gz.

File metadata

  • Download URL: dmme-0.2.0.tar.gz
  • Upload date:
  • Size: 19.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for dmme-0.2.0.tar.gz
Algorithm Hash digest
SHA256 3d44752b045054a5ae1aef7b6d4201db704f49d1006c14bc6d2bf532114a8843
MD5 2ecd26192845e5d1d99cfe35e10d5e02
BLAKE2b-256 3f27841abf5f18ac326bcc648169d035d2475820b4171589dc8467908f087520

See more details on using hashes here.

File details

Details for the file dmme-0.2.0-py3-none-any.whl.

File metadata

  • Download URL: dmme-0.2.0-py3-none-any.whl
  • Upload date:
  • Size: 24.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for dmme-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 5622a1aaa6b5517f52abe346ef455c26b1de5bc1b787acb3ce46cbb6ec520744
MD5 3de1f579c5ab66024c44693b848526eb
BLAKE2b-256 5c6d0bb6f9996ef499621c62546e70582b379602e30adc2ebd8eca3e0663a6db

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page