Skip to main content

Diffusion Models Made Easy

Project description

Diffusion Models Made Easy

Diffusion Models Made Easy(dmme) is a collection of easy to understand diffusion model implementations in Pytorch.

Getting Started

Documentation is available at https://diffusion-models-made-easy.readthedocs.io/en/latest/

Installation

Install from pip

pip install dmme

installing dmme in edit mode requires pip>=22.3, update pip by running pip install -U pip

Install for customization or development

pip install -e ".[dev]"

Install dependencies for testing

pip install dmme[tests]

Install dependencies for docs

pip install dmme[docs]

Train Diffusion Models

Train DDPM Using LightningCLI and wandb logger with mixed precision

dmme.trainer fit --config configs/ddpm/cifar10.yaml

Train DDPM from python using pytorch-lightning

from pytorch_lightning import Trainer

from pytorch_lightning.loggers import WandbLogger

from dmme.ddpm import LitDDPM, UNet
from dmme.data import CIFAR10

from dmme.callbacks import GenerateImage


def main():
    trainer = Trainer(
        logger=WandbLogger(project="CIFAR10_Image_Generation", name="DDPM"),
        callbacks=GenerateImage((3, 32, 32), timesteps=1000),
        gradient_clip_val=1.0,
        auto_select_gpus=True,
        accelerator="gpu",
        precision=16,
        max_steps=800_000,
    )

    ddpm = LitDDPM(
        UNet(in_channels=3),
        lr=2e-4,
        warmup=5000,
        imgsize=(3, 32, 32),
        timesteps=1000,
        decay=0.9999,
    )
    cifar10 = CIFAR10()

    trainer.fit(ddpm, cifar10)


if __name__ == "__main__":
    main()

or use the DDPMSampler class to train using pytorch

note: does not include gradient clipping, logging and checkpointing

from tqdm import tqdm

import torch
from torch.optim import Adam
import torch.nn.functional as F

from dmme.data import CIFAR10

from dmme.ddpm import DDPM, UNet
from dmme.lr_scheduler import WarmupLR

from dmme.common import gaussian_like, uniform_int


def train(timesteps=1000, lr=2e-4, clip_val=1.0, warmup=5000, max_steps=800_000):
    device = torch.device("cuda") if torch.cuda.is_available() else "cpu"

    model = UNet()
    model = model.to(device)

    ddpm = DDPM(timesteps=timesteps)
    ddpm = ddpm.to(device)

    cifar10 = CIFAR10()
    cifar10.prepare_data()
    cifar10.setup("fit")

    train_dataloader = cifar10.train_dataloader()

    optimizer = Adam(model.parameters(), lr=lr)
    lr_scheduler = WarmupLR(optimizer, warmup=warmup)

    steps = 0
    while steps < max_steps:
        prog_bar = tqdm(train_dataloader)
        for x_0, _ in prog_bar:
            x_0 = x_0.to(device)

            batch_size: int = x_0.size(0)
            t = uniform_int(0, timesteps, batch_size, device=x_0.device)

            noise = gaussian_like(x_0)

            with torch.autocast("cuda" if device != "cpu" else "cpu"):
                x_t = ddpm.forward_process(x_0, t, noise)

                noise_estimate = model(x_t, t)

                loss = F.mse_loss(noise, noise_estimate)

            optimizer.zero_grad()
            loss.backward()

            torch.nn.utils.clip_grad_norm_(model.parameters(), clip_val)

            optimizer.step()
            lr_scheduler.step()

            steps += 1

            prog_bar.set_postfix({"loss": loss, "steps": steps})

            if steps == max_steps:
                break


if __name__ == "__main__":
    train()

Supported Diffusion Models

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dmme-0.3.0.tar.gz (17.7 kB view details)

Uploaded Source

Built Distribution

dmme-0.3.0-py3-none-any.whl (20.2 kB view details)

Uploaded Python 3

File details

Details for the file dmme-0.3.0.tar.gz.

File metadata

  • Download URL: dmme-0.3.0.tar.gz
  • Upload date:
  • Size: 17.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for dmme-0.3.0.tar.gz
Algorithm Hash digest
SHA256 578981a7b71173e394d10035ba477efa919d4703c5347c54b599f6fc56304fae
MD5 22f45f22faec8c14f841c02c4ccc1df4
BLAKE2b-256 1ba351d8763bf961a8664889d6e4404bc0107c31c92427229703651d9d3c1f29

See more details on using hashes here.

File details

Details for the file dmme-0.3.0-py3-none-any.whl.

File metadata

  • Download URL: dmme-0.3.0-py3-none-any.whl
  • Upload date:
  • Size: 20.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for dmme-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 128c389cde0eb69bbbe2cdc4b4b746b8ccabbb3ca13264e680d62459ea996d83
MD5 84534685ac3d14c25481b5cdc01961d8
BLAKE2b-256 9da205cdeadb4a7de564bc559ecd93b0c0f4a30a63fc50adf0f7035ec767a1c8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page