Skip to main content

Diffusion Models Made Easy

Project description

Diffusion Models Made Easy

Diffusion Models Made Easy(dmme) is a collection of easy to understand diffusion model implementations in Pytorch.

Getting Started

Documentation is available at https://diffusion-models-made-easy.readthedocs.io/en/latest/

Installation

Install from pip

pip install dmme

installing dmme in edit mode requires pip>=22.3, update pip by running pip install -U pip

Install for customization or development

pip install -e ".[dev]"

Install dependencies for testing

pip install dmme[tests]

Install dependencies for docs

pip install dmme[docs]

Train Diffusion Models

Train DDPM Using LightningCLI and wandb logger with mixed precision

dmme.trainer fit --config configs/ddpm/cifar10.yaml

Train DDPM from python using pytorch-lightning

from pytorch_lightning import Trainer

from pytorch_lightning.loggers import WandbLogger

from dmme.ddpm import LitDDPM, UNet
from dmme.data import CIFAR10

from dmme.callbacks import GenerateImage


def main():
    trainer = Trainer(
        logger=WandbLogger(project="CIFAR10_Image_Generation", name="DDPM"),
        callbacks=GenerateImage((3, 32, 32), timesteps=1000),
        gradient_clip_val=1.0,
        auto_select_gpus=True,
        accelerator="gpu",
        precision=16,
        max_steps=800_000,
    )

    ddpm = LitDDPM(
        UNet(in_channels=3),
        lr=2e-4,
        warmup=5000,
        imgsize=(3, 32, 32),
        timesteps=1000,
        decay=0.9999,
    )
    cifar10 = CIFAR10()

    trainer.fit(ddpm, cifar10)


if __name__ == "__main__":
    main()

or use the DDPMSampler class to train using pytorch

note: does not include gradient clipping, logging and checkpointing

from tqdm import tqdm

import torch
from torch.optim import Adam
import torch.nn.functional as F

from dmme.data import CIFAR10

from dmme.ddpm import DDPM, UNet
from dmme.lr_scheduler import WarmupLR

from dmme.common import gaussian_like, uniform_int


def train(timesteps=1000, lr=2e-4, clip_val=1.0, warmup=5000, max_steps=800_000):
    device = torch.device("cuda") if torch.cuda.is_available() else "cpu"

    model = UNet()
    model = model.to(device)

    ddpm = DDPM(timesteps=timesteps)
    ddpm = ddpm.to(device)

    cifar10 = CIFAR10()
    cifar10.prepare_data()
    cifar10.setup("fit")

    train_dataloader = cifar10.train_dataloader()

    optimizer = Adam(model.parameters(), lr=lr)
    lr_scheduler = WarmupLR(optimizer, warmup=warmup)

    steps = 0
    while steps < max_steps:
        prog_bar = tqdm(train_dataloader)
        for x_0, _ in prog_bar:
            x_0 = x_0.to(device)

            batch_size: int = x_0.size(0)
            t = uniform_int(0, timesteps, batch_size, device=x_0.device)

            noise = gaussian_like(x_0)

            with torch.autocast("cuda" if device != "cpu" else "cpu"):
                x_t = ddpm.forward_process(x_0, t, noise)

                noise_estimate = model(x_t, t)

                loss = F.mse_loss(noise, noise_estimate)

            optimizer.zero_grad()
            loss.backward()

            torch.nn.utils.clip_grad_norm_(model.parameters(), clip_val)

            optimizer.step()
            lr_scheduler.step()

            steps += 1

            prog_bar.set_postfix({"loss": loss, "steps": steps})

            if steps == max_steps:
                break


if __name__ == "__main__":
    train()

Supported Diffusion Models

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dmme-0.3.2.tar.gz (18.7 kB view details)

Uploaded Source

Built Distribution

dmme-0.3.2-py3-none-any.whl (22.5 kB view details)

Uploaded Python 3

File details

Details for the file dmme-0.3.2.tar.gz.

File metadata

  • Download URL: dmme-0.3.2.tar.gz
  • Upload date:
  • Size: 18.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for dmme-0.3.2.tar.gz
Algorithm Hash digest
SHA256 be95b6dad2b4f32872b7b1c59ca812784e58f9b6557dd5847e5566351cc2e5c5
MD5 a85ea4422302e4e9e06989a08f0c77ef
BLAKE2b-256 c19aafee80faaa619cc8caaae99c06e245d99423b782dc40bcc6ac5845fb7b7e

See more details on using hashes here.

File details

Details for the file dmme-0.3.2-py3-none-any.whl.

File metadata

  • Download URL: dmme-0.3.2-py3-none-any.whl
  • Upload date:
  • Size: 22.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for dmme-0.3.2-py3-none-any.whl
Algorithm Hash digest
SHA256 c9c5566000373d2b1c94de03be27825a263b8f56d5a83ef141b760b26b2cd871
MD5 ada327437a47a181880cd39ca11d6a42
BLAKE2b-256 74807945d4d4524c6063dad097ff98c8444567f25620a13ceff2fcae00272333

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page