Skip to main content

Diffusion Models Made Easy

Project description

Diffusion Models Made Easy

Diffusion Models Made Easy(dmme) is a collection of easy to understand diffusion model implementations in Pytorch.

Getting Started

Documentation is available at https://diffusion-models-made-easy.readthedocs.io/en/latest/

Installation

Install from pip

pip install dmme

installing dmme in edit mode requires pip>=22.3, update pip by running pip install -U pip

Install for customization or development

pip install -e ".[dev]"

Install dependencies for testing

pip install dmme[tests]

Install dependencies for docs

pip install dmme[docs]

Train Diffusion Models

Train DDPM Using LightningCLI and wandb logger with mixed precision

dmme.trainer fit --config configs/ddpm/cifar10.yaml

Train DDPM from python using pytorch-lightning

from pytorch_lightning import Trainer

from pytorch_lightning.loggers import WandbLogger

from dmme.ddpm import LitDDPM, UNet
from dmme.data import CIFAR10

from dmme.callbacks import GenerateImage


def main():
    trainer = Trainer(
        logger=WandbLogger(project="CIFAR10_Image_Generation", name="DDPM"),
        callbacks=GenerateImage((3, 32, 32), timesteps=1000),
        gradient_clip_val=1.0,
        auto_select_gpus=True,
        accelerator="gpu",
        precision=16,
        max_steps=800_000,
    )

    ddpm = LitDDPM(
        UNet(in_channels=3),
        lr=2e-4,
        warmup=5000,
        imgsize=(3, 32, 32),
        timesteps=1000,
        decay=0.9999,
    )
    cifar10 = CIFAR10()

    trainer.fit(ddpm, cifar10)


if __name__ == "__main__":
    main()

or use the DDPMSampler class to train using pytorch

note: does not include gradient clipping, logging and checkpointing

from tqdm import tqdm

import torch
from torch.optim import Adam
import torch.nn.functional as F

from dmme.data import CIFAR10

from dmme.ddpm import DDPM, UNet
from dmme.lr_scheduler import WarmupLR

from dmme.common import gaussian_like, uniform_int


def train(timesteps=1000, lr=2e-4, clip_val=1.0, warmup=5000, max_steps=800_000):
    device = torch.device("cuda") if torch.cuda.is_available() else "cpu"

    model = UNet()
    model = model.to(device)

    ddpm = DDPM(timesteps=timesteps)
    ddpm = ddpm.to(device)

    cifar10 = CIFAR10()
    cifar10.prepare_data()
    cifar10.setup("fit")

    train_dataloader = cifar10.train_dataloader()

    optimizer = Adam(model.parameters(), lr=lr)
    lr_scheduler = WarmupLR(optimizer, warmup=warmup)

    steps = 0
    while steps < max_steps:
        prog_bar = tqdm(train_dataloader)
        for x_0, _ in prog_bar:
            x_0 = x_0.to(device)

            batch_size: int = x_0.size(0)
            t = uniform_int(0, timesteps, batch_size, device=x_0.device)

            noise = gaussian_like(x_0)

            with torch.autocast("cuda" if device != "cpu" else "cpu"):
                x_t = ddpm.forward_process(x_0, t, noise)

                noise_estimate = model(x_t, t)

                loss = F.mse_loss(noise, noise_estimate)

            optimizer.zero_grad()
            loss.backward()

            torch.nn.utils.clip_grad_norm_(model.parameters(), clip_val)

            optimizer.step()
            lr_scheduler.step()

            steps += 1

            prog_bar.set_postfix({"loss": loss, "steps": steps})

            if steps == max_steps:
                break


if __name__ == "__main__":
    train()

Supported Diffusion Models

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dmme-0.3.3.tar.gz (19.5 kB view details)

Uploaded Source

Built Distribution

dmme-0.3.3-py3-none-any.whl (24.6 kB view details)

Uploaded Python 3

File details

Details for the file dmme-0.3.3.tar.gz.

File metadata

  • Download URL: dmme-0.3.3.tar.gz
  • Upload date:
  • Size: 19.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for dmme-0.3.3.tar.gz
Algorithm Hash digest
SHA256 62fb6471bfad8bcefdc36a7465bf2f813b426523b561e70ecfd184710e333d53
MD5 076e4e019f0d5c3cef5195e5745c81d6
BLAKE2b-256 f363d018c83a682558416289197444afe310813425dffb5a50d4377118a7478b

See more details on using hashes here.

File details

Details for the file dmme-0.3.3-py3-none-any.whl.

File metadata

  • Download URL: dmme-0.3.3-py3-none-any.whl
  • Upload date:
  • Size: 24.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for dmme-0.3.3-py3-none-any.whl
Algorithm Hash digest
SHA256 856ff47371df21b40af558db3a2e995fa7164bab6ecba05b0d569aa3989cb4a4
MD5 43f031822ba1535e66cc95d393cb7c34
BLAKE2b-256 603b00e27f19511c1283c3269d0bc863f35267a32cc62e93f162a421fe336379

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page