Skip to main content

Diffusion Models Made Easy

Project description

Diffusion Models Made Easy

Diffusion Models Made Easy(dmme) is a collection of easy to understand diffusion model implementations in Pytorch.

Documentation is available at https://diffusion-models-made-easy.readthedocs.io/en/latest/

Installation

Install from pip

pip install dmme

Install for customization or development

pip install -e ".[dev]"

Install dependencies for testing

pip install dmme[tests]

Install dependencies for editing documentation

pip install dmme[docs]

Train Diffusion Models

dmme uses LightningCLI as a cli interface for training and evaluation.

You can find sample configuration file in the configs directory

Using config files you can train DDPM by running

dmme.trainer fit --config configs/ddpm/cifar10.yaml

Or you can manually specify configurations for training

dmme.trainer fit --seed_everything 1337 \
    --trainer.accelerator gpu --trainer.precision 16 --trainer.benchmark true \
    --trainer.logger=pytorch_lightning.loggers.WandbLogger \
    --trainer.logger.project="CIFAR10_Image_Generation" \
    --trainer.logger.name="DDPM" \
    --trainer.gradient_clip_val=1.0 \
    --trainer.max_steps 800_000 \
    --model LitDDPM --data CIFAR10

Supported Diffusion Models

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dmme-0.5.2b0.tar.gz (24.1 kB view details)

Uploaded Source

Built Distribution

dmme-0.5.2b0-py3-none-any.whl (35.2 kB view details)

Uploaded Python 3

File details

Details for the file dmme-0.5.2b0.tar.gz.

File metadata

  • Download URL: dmme-0.5.2b0.tar.gz
  • Upload date:
  • Size: 24.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for dmme-0.5.2b0.tar.gz
Algorithm Hash digest
SHA256 68c4a0bce347a741f3b9b8127ea5d3f715c83ca87e78f2cfbcaf72451edd48dc
MD5 20decbe1ba9a9fcf25251acabfb46804
BLAKE2b-256 7d38b42031ff3b4a2b071413fedd685ed8c7bc5aa316dfcdf757d0cd8a9884fd

See more details on using hashes here.

File details

Details for the file dmme-0.5.2b0-py3-none-any.whl.

File metadata

  • Download URL: dmme-0.5.2b0-py3-none-any.whl
  • Upload date:
  • Size: 35.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for dmme-0.5.2b0-py3-none-any.whl
Algorithm Hash digest
SHA256 bb31ba329677b6e1c5b3dc687a7301fcfcfde873c3ddd9900b3066c8730b61ff
MD5 6002e70d05fe17f9b3926c53a70f9b87
BLAKE2b-256 a87480ab36945c992eccdb1e21a041a232f5dd1eb1c9dbc758c725e3bc05ef71

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page