Skip to main content

Genomics data ML ready

Project description

DNARecords

PyPI license example workflow codecov pylint Score

Genomics data ML ready.

Transform your vcf, bgen, etc. genomics datasets into a sample wise format so that you can use it for Deep Learning models.

Installation

DNARecords package has two main dependencies:

  • Hail, if you are transforming your genomics data into DNARecords
  • Tensorflow, if you are using a previously DNARecords dataset, for example, to train a DL model

As you may know, Tensorflow and Spark does not play very well together on a cluster with more than one machine.

However, dnarecords package needs to be installed only on the driver machine of a Hail cluster.

For that reason, we recommend following these installation tips.

On a dev environment

$ pip install dnarecords

On a Hail cluster or summiting a job to it

You will already have Pyspark installed and will not intend to install Tensorflow.

So, just install dnarecords without dependencies on the driver machine.

There will be no missing modules as soon as you use the classes and functionality intended for Spark.

$ /opt/conda/miniconda3/bin/python -m pip install dnarecords --no-deps

Note: assuming Hail python executable is /opt/conda/miniconda3/bin/python

On a Tensorflow environment or summiting a job to it

You will already have Tensorflow installed and will not intend to install Pyspark.

So, just install dnarecords without dependencies.

There will be no missing modules as soon as you use the classes and functionality intended for Tensorflow.

$ pip install dnarecords --no-deps

Working on Google Dataproc

Just use and initialization action that installs dnarecords without dependencies.

$ hailctl dataproc start dnarecords --init gs://dnarecords/dataproc-init.sh

Iy you need to work with other cloud providers, refer to Hail docs.

Usage

It is quite straightforward to understand the functionality of the package.

Given some genomics data, you can transform it into a DNARecords Dataset this way:

import dnarecords as dr


hl = dr.helper.DNARecordsUtils.init_hail()
hl.utils.get_1kg('/tmp/1kg')
mt = hl.read_matrix_table('/tmp/1kg/1kg.mt')
mt = mt.annotate_entries(dosage=hl.pl_dosage(mt.PL))

dnarecords_path = '/tmp/dnarecords'
writer = dr.writer.DNARecordsWriter(mt.dosage)
writer.write(dnarecords_path, sparse=True, sample_wise=True, variant_wise=True,
             tfrecord_format=True, parquet_format=True,
             write_mode='overwrite', gzip=True)

Given a DNARecords Dataset, you can read it as Tensorflow Datasets this way:

import dnarecords as dr


dnarecords_path = '/tmp/dnarecords'
reader = dr.reader.DNARecordsReader(dnarecords_path)
samplewise_ds = reader.sample_wise_dataset()
variantwise_ds = reader.variant_wise_dataset()

Or, given a DNARecords Dataset, you can read it as Pyspark DataFrames this way:

import dnarecords as dr


dnarecords_path = '/tmp/dnarecords'
reader = dr.reader.DNASparkReader(dnarecords_path)
samplewise_df = reader.sample_wise_dnarecords()
variantwise_df = reader.variant_wise_dnarecords()

We will provide more examples and integrations soon.

Contributing

Interested in contributing? Check out the contributing guidelines. Please note that this project is released with a Code of Conduct. By contributing to this project, you agree to abide by its terms.

License

dnarecords was created by Atray Dixit, Andrés Mañas Mañas, Lucas Seninge. It is licensed under the terms of the MIT license.

Credits

dnarecords was created with cookiecutter and the py-pkgs-cookiecutter template.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dnarecords-0.1.0.tar.gz (13.9 kB view details)

Uploaded Source

Built Distribution

dnarecords-0.1.0-py3-none-any.whl (14.1 kB view details)

Uploaded Python 3

File details

Details for the file dnarecords-0.1.0.tar.gz.

File metadata

  • Download URL: dnarecords-0.1.0.tar.gz
  • Upload date:
  • Size: 13.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.12

File hashes

Hashes for dnarecords-0.1.0.tar.gz
Algorithm Hash digest
SHA256 3989fed76520933dc93240d1da9e430465cc3c113bf98c2e90974e8f432191f1
MD5 95c91419ef5664e5b5f413993398a3b5
BLAKE2b-256 a3bf1e1014f80ee0d6a46664b143cd7d3ae4d1042952ffa0676b59b5fc1690a1

See more details on using hashes here.

File details

Details for the file dnarecords-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: dnarecords-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 14.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.12

File hashes

Hashes for dnarecords-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 fcfe347e283ab258b0c7c9a95db28924e8b76ca724292c045489cc51bedf620b
MD5 5929c0555513c544c8dfcb9086c16fa9
BLAKE2b-256 6588536a49ec86db37abbefee8f428c7654b923328875de28e1e1c2e54a13c95

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page