Skip to main content

Genomics data ML ready

Project description

DNARecords

PyPI license example workflow codecov pylint Score semantic-release: angular

Genomics data ML ready.

Transform your vcf, bgen, etc. genomics datasets into a sample wise format so that you can use it for Deep Learning models.

Installation

DNARecords package has two main dependencies:

  • Hail, if you are transforming your genomics data into DNARecords
  • Tensorflow, if you are using a previously DNARecords dataset, for example, to train a DL model

As you may know, Tensorflow and Spark does not play very well together on a cluster with more than one machine.

However, dnarecords package needs to be installed only on the driver machine of a Hail cluster.

For that reason, we recommend following these installation tips.

On a dev environment

$ pip install dnarecords

For further details (or any trouble), review Local environments section.

On a Hail cluster or submitting a job to it

You will already have Pyspark installed and will not intend to install Tensorflow.

So, just install dnarecords without dependencies on the driver machine.

There will be no missing modules as soon as you use the classes and functionality intended for Spark.

$ /opt/conda/miniconda3/bin/python -m pip install dnarecords --no-deps

Note: assuming Hail python executable is /opt/conda/miniconda3/bin/python

On a Tensorflow environment or submitting a job to it

You will already have Tensorflow installed and will not intend to install Pyspark.

So, just install dnarecords without dependencies.

There will be no missing modules as soon as you use the classes and functionality intended for Tensorflow.

$ pip install dnarecords --no-deps

Working on Google Dataproc

Just use and initialization action that installs dnarecords without dependencies.

$ hailctl dataproc start dnarecords --init gs://dnarecords/dataproc-init.sh

Iy you need to work with other cloud providers, refer to Hail docs.

Usage

It is quite straightforward to understand the functionality of the package.

Given some genomics data, you can transform it into a DNARecords Dataset this way:

import dnarecords as dr


hl = dr.helper.DNARecordsUtils.init_hail()
hl.utils.get_1kg('/tmp/1kg')
mt = hl.read_matrix_table('/tmp/1kg/1kg.mt')
mt = mt.annotate_entries(dosage=hl.pl_dosage(mt.PL))

dnarecords_path = '/tmp/dnarecords'
writer = dr.writer.DNARecordsWriter(mt.dosage)
writer.write(dnarecords_path, sparse=True, sample_wise=True, variant_wise=True,
             tfrecord_format=True, parquet_format=True,
             write_mode='overwrite', gzip=True)

Given a DNARecords Dataset, you can read it as Tensorflow Datasets this way:

import dnarecords as dr


dnarecords_path = '/tmp/dnarecords'
reader = dr.reader.DNARecordsReader(dnarecords_path)
samplewise_ds = reader.sample_wise_dataset()
variantwise_ds = reader.variant_wise_dataset()

Or, given a DNARecords Dataset, you can read it as Pyspark DataFrames this way:

import dnarecords as dr


dnarecords_path = '/tmp/dnarecords'
reader = dr.reader.DNASparkReader(dnarecords_path)
samplewise_df = reader.sample_wise_dnarecords()
variantwise_df = reader.variant_wise_dnarecords()

We will provide more examples and integrations soon.

Contributing

Interested in contributing? Check out the contributing guidelines. Please note that this project is released with a Code of Conduct. By contributing to this project, you agree to abide by its terms.

License

dnarecords was created by Atray Dixit, Andrés Mañas Mañas, Lucas Seninge. It is licensed under the terms of the MIT license.

Credits

dnarecords was created with cookiecutter and the py-pkgs-cookiecutter template.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dnarecords-0.2.2.tar.gz (14.4 kB view details)

Uploaded Source

Built Distribution

dnarecords-0.2.2-py3-none-any.whl (14.6 kB view details)

Uploaded Python 3

File details

Details for the file dnarecords-0.2.2.tar.gz.

File metadata

  • Download URL: dnarecords-0.2.2.tar.gz
  • Upload date:
  • Size: 14.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.13

File hashes

Hashes for dnarecords-0.2.2.tar.gz
Algorithm Hash digest
SHA256 a9f2fb8019a27cc592fc54384cd494a7aae17ab880d51fccfeecde686c1fe793
MD5 430ac4bc14b8e3fdaba3c9a7ca28c2b4
BLAKE2b-256 b0571badcba52bb05284ff582a94265895f30bf67c5e7bcfc5e084d285f50ce7

See more details on using hashes here.

File details

Details for the file dnarecords-0.2.2-py3-none-any.whl.

File metadata

  • Download URL: dnarecords-0.2.2-py3-none-any.whl
  • Upload date:
  • Size: 14.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.13

File hashes

Hashes for dnarecords-0.2.2-py3-none-any.whl
Algorithm Hash digest
SHA256 603450dd463b6a379ac0c7f74048a8aab36a317a6c3355d39d5d6af4a8085871
MD5 dda642b426847b7e65379f25d632f41f
BLAKE2b-256 dfecaa7c26c52d4c2474ae5776ccdd60283955d5847313a5b299e2a34742336f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page