DnnLab
Project description
DnnLab
Dnnlab is a small framework for deep learning models based on TensorFlow.
It provides custom training loops for:
- Generative Models (GAN, cGan, cycleGAN)
- Image Detection (custom YOLO)
Additonaly custom Keras Layer:
- Non-Local-Blocks (Self-Attention)
- Squeeze and Excitation Blocks (SEBlocks)
- YOLO-Decoding Layer
Input pipeline functionality:
- YOLO (Tfrecords to Datasets)
- YOLO data augmentation
- Generative Models (Tfrecords to Datasets)
TensorBoard output:
- YOLO coco metrics (Precision (mAP) & Recall)
- YOLO loss (loss_class, loss_conf, loss_xywh, total_loss)
- YOLO bounding boxes
- Generative Models (Loss & Images)
Requirements
TensorFlow 2.3.0
Installation
Run the following to install:
pip install dnnlab
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
dnnlab-2.2.5.tar.gz
(80.7 kB
view hashes)
Built Distribution
dnnlab-2.2.5-py3-none-any.whl
(118.9 kB
view hashes)