Skip to main content

Pytorch-like Neural Network framework

Project description

dnnpy Framework

Installation

pip install dnnpy

Example usage

from dnnpy.activations import ReLU
from dnnpy.data import make_regression_data
from dnnpy.layers import Sequential, Dense, Dropout
from dnnpy.loss_functions import MAELoss
from dnnpy.optimizers import Adam
from dnnpy.train import train
from dnnpy.utils import split_data
import matplotlib.pyplot as plt

n_inputs = 10
hidden_units = 32
n_outputs = 1

x, y = make_regression_data(n_samples=1000, n_features=n_inputs, n_labels=1)

(x_train, y_train), (x_test, y_test) = split_data(x, y, ratio=0.7)

model = Sequential(Dense(in_features=n_inputs, out_features=hidden_units, activation=ReLU()),
                   Dropout(0.3),
                   Dense(in_features=hidden_units, out_features=n_outputs))

opt = Adam(model.parameters(), lr=1e-3)
loss_func = MAELoss()

train_loss, valid_loss = train(data=(x_train, y_train), network=model, loss=loss_func, optimiser=opt, epochs=30,
                               batch_size=16)

plt.plot(train_loss, label='train')
plt.plot(valid_loss, label='val')
plt.legend()
plt.show()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dnnpy-0.0.1.tar.gz (17.5 kB view details)

Uploaded Source

Built Distribution

dnnpy-0.0.1-py3-none-any.whl (21.0 kB view details)

Uploaded Python 3

File details

Details for the file dnnpy-0.0.1.tar.gz.

File metadata

  • Download URL: dnnpy-0.0.1.tar.gz
  • Upload date:
  • Size: 17.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/46.3.1 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.6

File hashes

Hashes for dnnpy-0.0.1.tar.gz
Algorithm Hash digest
SHA256 f38c126f976305b50c9f6c33a822d476c9ddd823a20c0ca4a9734f988d89b834
MD5 fa33ddaf99cb81e1487c12552f1248d4
BLAKE2b-256 6eb66bc1e4fefd9b20f22f825ac9218cdb33b8445930fc7d98c0d3343e7d4c87

See more details on using hashes here.

File details

Details for the file dnnpy-0.0.1-py3-none-any.whl.

File metadata

  • Download URL: dnnpy-0.0.1-py3-none-any.whl
  • Upload date:
  • Size: 21.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/46.3.1 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.6

File hashes

Hashes for dnnpy-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 384f98514e192fdfab5bf8a33be83a705b08919b0d17e8c4378fd69cbf11a5f5
MD5 6545ed4adde9c8aee3bed2024cce4a95
BLAKE2b-256 9e2df2f12f7ddd671f418dcd38a87bbbb661d6fb8902fadc045332d186963583

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page