Skip to main content

Docling PDF conversion package

Project description

Docling

Docling

PyPI version Python Poetry Code style: black Imports: isort Pydantic v2 pre-commit License MIT

Docling bundles PDF document conversion to JSON and Markdown in an easy, self-contained package.

Features

  • ⚡ Converts any PDF document to JSON or Markdown format, stable and lightning fast
  • 📑 Understands detailed page layout, reading order and recovers table structures
  • 📝 Extracts metadata from the document, such as title, authors, references and language
  • 🔍 Optionally applies OCR (use with scanned PDFs)

Installation

To use Docling, simply install docling from your package manager, e.g. pip:

pip install docling

[!NOTE]
Works on macOS and Linux environments. Windows platforms are currently not tested.

Development setup

To develop for Docling, you need Python 3.10 / 3.11 / 3.12 and Poetry. You can then install from your local clone's root dir:

poetry install

Usage

For basic usage, see the convert.py example module. Run with:

python examples/convert.py

The output of the above command will be written to ./scratch.

Adjust pipeline features

Control pipeline options

You can control if table structure recognition or OCR should be performed by arguments passed to DocumentConverter:

doc_converter = DocumentConverter(
    artifacts_path=artifacts_path,
    pipeline_options=PipelineOptions(
        do_table_structure=False,  # controls if table structure is recovered 
        do_ocr=True,  # controls if OCR is applied (ignores programmatic content)
    ),
)

Control table extraction options

You can control if table structure recognition should map the recognized structure back to PDF cells (default) or use text cells from the structure prediction itself. This can improve output quality if you find that multiple columns in extracted tables are erroneously merged into one.

pipeline_options = PipelineOptions(do_table_structure=True)
pipeline_options.table_structure_options.do_cell_matching = False  # uses text cells predicted from table structure model

doc_converter = DocumentConverter(
    artifacts_path=artifacts_path,
    pipeline_options=pipeline_options,
)

Impose limits on the document size

You can limit the file size and number of pages which should be allowed to process per document:

conv_input = DocumentConversionInput.from_paths(
    paths=[Path("./test/data/2206.01062.pdf")],
    limits=DocumentLimits(max_num_pages=100, max_file_size=20971520)
)

Convert from binary PDF streams

You can convert PDFs from a binary stream instead of from the filesystem as follows:

buf = BytesIO(your_binary_stream)
docs = [DocumentStream(filename="my_doc.pdf", stream=buf)]
conv_input = DocumentConversionInput.from_streams(docs)
converted_docs = doc_converter.convert(conv_input)

Limit resource usage

You can limit the CPU threads used by Docling by setting the environment variable OMP_NUM_THREADS accordingly. The default setting is using 4 CPU threads.

Contributing

Please read Contributing to Docling for details.

References

If you use Docling in your projects, please consider citing the following:

@software{Docling,
author = {Deep Search Team},
month = {7},
title = {{Docling}},
url = {https://github.com/DS4SD/docling},
version = {main},
year = {2024}
}

License

The Docling codebase is under MIT license. For individual model usage, please refer to the model licenses found in the original packages.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

docling-1.0.2.tar.gz (29.0 kB view details)

Uploaded Source

Built Distribution

docling-1.0.2-py3-none-any.whl (33.5 kB view details)

Uploaded Python 3

File details

Details for the file docling-1.0.2.tar.gz.

File metadata

  • Download URL: docling-1.0.2.tar.gz
  • Upload date:
  • Size: 29.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.10.12 Linux/6.5.0-1024-azure

File hashes

Hashes for docling-1.0.2.tar.gz
Algorithm Hash digest
SHA256 0a60b02514d2e2a968bec19fc67ce600d5990f9ddd05c7d3cf78b0ee97daa348
MD5 546cf9eb6c866558b0f4165f1cd1deca
BLAKE2b-256 4abb246006db00ab7c56aa39ea32a3f9bb9cc6c7ba9b50047f0cd6f712c8b966

See more details on using hashes here.

Provenance

File details

Details for the file docling-1.0.2-py3-none-any.whl.

File metadata

  • Download URL: docling-1.0.2-py3-none-any.whl
  • Upload date:
  • Size: 33.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.10.12 Linux/6.5.0-1024-azure

File hashes

Hashes for docling-1.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 ef1252ef68ee80ddeb068547dc6c38268410538ac78d8ff6a79b77877460a34e
MD5 06ce29f41ae7519db4614f0731a93cb5
BLAKE2b-256 86a4b777677539e0df60e6448978ac9a58db7645b6cc5da9edec34cd859955d4

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page