Docling PDF conversion package
Project description
Docling
Docling bundles PDF document conversion to JSON and Markdown in an easy, self-contained package.
Features
- โก Converts any PDF document to JSON or Markdown format, stable and lightning fast
- ๐ Understands detailed page layout, reading order and recovers table structures
- ๐ Extracts metadata from the document, such as title, authors, references and language
- ๐ Includes OCR support for scanned PDFs
- ๐ค Integrates easily with LLM app / RAG frameworks like ๐ฆ LlamaIndex and ๐ฆ๐ LangChain
- ๐ป Provides a simple and convenient CLI
Installation
To use Docling, simply install docling
from your package manager, e.g. pip:
pip install docling
Works on macOS, Linux and Windows environments. Both x86_64 and arm64 architectures.
Alternative PyTorch distributions
The Docling models depend on the PyTorch library.
Depending on your architecture, you might want to use a different distribution of torch
.
For example, you might want support for different accelerator or for a cpu-only version.
All the different ways for installing torch
are listed on their website https://pytorch.org/.
One common situation is the installation on Linux systems with cpu-only support. In this case, we suggest the installation of Docling with the following options
# Example for installing on the Linux cpu-only version
pip install docling --extra-index-url https://download.pytorch.org/whl/cpu
Alternative OCR engines
Docling supports multiple OCR engines for processing scanned documents. The current version provides the following engines.
Engine | Installation | Usage |
---|---|---|
EasyOCR | Default in Docling or via pip install easyocr . |
EasyOcrOptions |
Tesseract | System dependency. See description for Tesseract and Tesserocr below. | TesseractOcrOptions |
Tesseract CLI | System dependency. See description below. | TesseractCliOcrOptions |
The Docling DocumentConverter
allows to choose the OCR engine with the ocr_options
settings. For example
from docling.datamodel.base_models import ConversionStatus, PipelineOptions
from docling.datamodel.pipeline_options import PipelineOptions, EasyOcrOptions, TesseractOcrOptions
from docling.document_converter import DocumentConverter
pipeline_options = PipelineOptions()
pipeline_options.do_ocr = True
pipeline_options.ocr_options = TesseractOcrOptions() # Use Tesseract
doc_converter = DocumentConverter(
pipeline_options=pipeline_options,
)
Tesseract installation
Tesseract is a popular OCR engine which is available
on most operating systems. For using this engine with Docling, Tesseract must be installed on your
system, using the packaging tool of your choice. Below we provide example commands.
After installing Tesseract you are expected to provide the path to its language files using the
TESSDATA_PREFIX
environment variable (note that it must terminate with a slash /
).
For macOS, we reccomend using Homebrew.
brew install tesseract leptonica pkg-config
TESSDATA_PREFIX=/opt/homebrew/share/tessdata/
echo "Set TESSDATA_PREFIX=${TESSDATA_PREFIX}"
For Debian-based systems.
apt-get install tesseract-ocr tesseract-ocr-eng libtesseract-dev libleptonica-dev pkg-config
TESSDATA_PREFIX=$(dpkg -L tesseract-ocr-eng | grep tessdata$)
echo "Set TESSDATA_PREFIX=${TESSDATA_PREFIX}"
For RHEL systems.
dnf install tesseract tesseract-devel tesseract-langpack-eng leptonica-devel
TESSDATA_PREFIX=/usr/share/tesseract/tessdata/
echo "Set TESSDATA_PREFIX=${TESSDATA_PREFIX}"
Linking to Tesseract
The most efficient usage of the Tesseract library is via linking. Docling is using the Tesserocr package for this.
If you get into installation issues of Tesserocr, we suggest using the following installation options:
pip uninstall tesserocr
pip install --no-binary :all: tesserocr
Docling development setup
To develop for Docling (features, bugfixes etc.), install as follows from your local clone's root dir:
poetry install --all-extras
Getting started
Convert a single document
To convert invidual PDF documents, use convert_single()
, for example:
from docling.document_converter import DocumentConverter
source = "https://arxiv.org/pdf/2408.09869" # PDF path or URL
converter = DocumentConverter()
result = converter.convert_single(source)
print(result.render_as_markdown()) # output: "## Docling Technical Report[...]"
print(result.render_as_doctags()) # output: "<document><title><page_1><loc_20>..."
Convert a batch of documents
For an example of batch-converting documents, see batch_convert.py.
From a local repo clone, you can run it with:
python examples/batch_convert.py
The output of the above command will be written to ./scratch
.
CLI
You can also use Docling directly from your command line to convert individual files โbe it local or by URLโ or whole directories.
A simple example would look like this:
docling https://arxiv.org/pdf/2206.01062
To see all available options (export formats etc.) run docling --help
.
CLI reference
Here are the available options as of this writing (for an up-to-date listing, run docling --help
):
$ docling --help
Usage: docling [OPTIONS] source
โญโ Arguments โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฎ
โ * input_sources source PDF files to convert. Can be local file / directory paths or URL. [default: None] [required] โ
โฐโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฏ
โญโ Options โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฎ
โ --json --no-json If enabled the document is exported as JSON. [default: no-json] โ
โ --md --no-md If enabled the document is exported as Markdown. [default: md] โ
โ --txt --no-txt If enabled the document is exported as Text. [default: no-txt] โ
โ --doctags --no-doctags If enabled the document is exported as Doc Tags. [default: no-doctags] โ
โ --ocr --no-ocr If enabled, the bitmap content will be processed using OCR. [default: ocr] โ
โ --backend [pypdfium2|docling] The PDF backend to use. [default: docling] โ
โ --output PATH Output directory where results are saved. [default: .] โ
โ --version Show version information. โ
โ --help Show this message and exit. โ
โฐโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฏ
RAG
Check out the following examples showcasing RAG using Docling with standard LLM application frameworks:
Advanced features
Adjust pipeline features
The example file custom_convert.py contains multiple ways one can adjust the conversion pipeline and features.
Control pipeline options
You can control if table structure recognition or OCR should be performed by arguments passed to DocumentConverter
:
doc_converter = DocumentConverter(
artifacts_path=artifacts_path,
pipeline_options=PipelineOptions(
do_table_structure=False, # controls if table structure is recovered
do_ocr=True, # controls if OCR is applied (ignores programmatic content)
),
)
Control table extraction options
You can control if table structure recognition should map the recognized structure back to PDF cells (default) or use text cells from the structure prediction itself. This can improve output quality if you find that multiple columns in extracted tables are erroneously merged into one.
from docling.datamodel.pipeline_options import PipelineOptions
pipeline_options = PipelineOptions(do_table_structure=True)
pipeline_options.table_structure_options.do_cell_matching = False # uses text cells predicted from table structure model
doc_converter = DocumentConverter(
artifacts_path=artifacts_path,
pipeline_options=pipeline_options,
)
Since docling 1.16.0: You can control which TableFormer mode you want to use. Choose between TableFormerMode.FAST
(default) and TableFormerMode.ACCURATE
(better, but slower) to receive better quality with difficult table structures.
from docling.datamodel.pipeline_options import PipelineOptions, TableFormerMode
pipeline_options = PipelineOptions(do_table_structure=True)
pipeline_options.table_structure_options.mode = TableFormerMode.ACCURATE # use more accurate TableFormer model
doc_converter = DocumentConverter(
artifacts_path=artifacts_path,
pipeline_options=pipeline_options,
)
Impose limits on the document size
You can limit the file size and number of pages which should be allowed to process per document:
conv_input = DocumentConversionInput.from_paths(
paths=[Path("./test/data/2206.01062.pdf")],
limits=DocumentLimits(max_num_pages=100, max_file_size=20971520)
)
Convert from binary PDF streams
You can convert PDFs from a binary stream instead of from the filesystem as follows:
buf = BytesIO(your_binary_stream)
docs = [DocumentStream(filename="my_doc.pdf", stream=buf)]
conv_input = DocumentConversionInput.from_streams(docs)
results = doc_converter.convert(conv_input)
Limit resource usage
You can limit the CPU threads used by Docling by setting the environment variable OMP_NUM_THREADS
accordingly. The default setting is using 4 CPU threads.
Chunking
You can perform a hierarchy-aware chunking of a Docling document as follows:
from docling.document_converter import DocumentConverter
from docling_core.transforms.chunker import HierarchicalChunker
doc = DocumentConverter().convert_single("https://arxiv.org/pdf/2206.01062").output
chunks = list(HierarchicalChunker().chunk(doc))
print(chunks[0])
# ChunkWithMetadata(
# path='#/main-text/1',
# text='DocLayNet: A Large Human-Annotated Dataset [...]',
# page=1,
# bbox=[107.30, 672.38, 505.19, 709.08],
# [...]
# )
Technical report
For more details on Docling's inner workings, check out the Docling Technical Report.
Contributing
Please read Contributing to Docling for details.
References
If you use Docling in your projects, please consider citing the following:
@techreport{Docling,
author = {Deep Search Team},
month = {8},
title = {Docling Technical Report},
url = {https://arxiv.org/abs/2408.09869},
eprint = {2408.09869},
doi = {10.48550/arXiv.2408.09869},
version = {1.0.0},
year = {2024}
}
License
The Docling codebase is under MIT license. For individual model usage, please refer to the model licenses found in the original packages.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file docling-1.19.1.tar.gz
.
File metadata
- Download URL: docling-1.19.1.tar.gz
- Upload date:
- Size: 46.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.8.3 CPython/3.10.12 Linux/6.5.0-1025-azure
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8adaa6fded86bf789520255a2868719224b3f0e6f808c61ba39af56ed8511510 |
|
MD5 | 9453f06404c77eeb6a4b96ebd62eaba6 |
|
BLAKE2b-256 | a53707fc5dcbee133f503b74054e517bc6a6931b2aa2d8782ba9d632921394a6 |
Provenance
File details
Details for the file docling-1.19.1-py3-none-any.whl
.
File metadata
- Download URL: docling-1.19.1-py3-none-any.whl
- Upload date:
- Size: 52.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.8.3 CPython/3.10.12 Linux/6.5.0-1025-azure
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 90bcd11ebdfd40985185b4f925f4c4172f441b694ba8590d0cd6590d4b20522d |
|
MD5 | 234c4cdca67c62b74057d68c6c200e8a |
|
BLAKE2b-256 | 128a6252a2925749b1c54ba2f219a8fd36700ca3a5f375351b7310892401f00b |