Skip to main content

SDK and CLI for parsing PDF, DOCX, HTML, and more, to a unified document representation for powering downstream workflows such as gen AI applications.

Project description

Docling

Docling

DS4SD%2Fdocling | Trendshift

arXiv Docs PyPI version Python Poetry Code style: black Imports: isort Pydantic v2 pre-commit License MIT

Docling parses documents and exports them to the desired format with ease and speed.

Features

  • 🗂️ Reads popular document formats (PDF, DOCX, PPTX, Images, HTML, AsciiDoc, Markdown) and exports to Markdown and JSON
  • 📑 Advanced PDF document understanding including page layout, reading order & table structures
  • 🧩 Unified, expressive DoclingDocument representation format
  • 🤖 Easy integration with LlamaIndex 🦙 & LangChain 🦜🔗 for powerful RAG / QA applications
  • 🔍 OCR support for scanned PDFs
  • 💻 Simple and convenient CLI

Explore the documentation to discover plenty examples and unlock the full power of Docling!

Coming soon

  • ♾️ Equation & code extraction
  • 📝 Metadata extraction, including title, authors, references & language
  • 🦜🔗 Native LangChain extension

Installation

To use Docling, simply install docling from your package manager, e.g. pip:

pip install docling

Works on macOS, Linux and Windows environments. Both x86_64 and arm64 architectures.

More detailed installation instructions are available in the docs.

Getting started

To convert individual documents, use convert(), for example:

from docling.document_converter import DocumentConverter

source = "https://arxiv.org/pdf/2408.09869"  # document per local path or URL
converter = DocumentConverter()
result = converter.convert(source)
print(result.document.export_to_markdown())  # output: "## Docling Technical Report[...]"

Check out Getting started. You will find lots of tuning options to leverage all the advanced capabilities.

Get help and support

Please feel free to connect with us using the discussion section.

Technical report

For more details on Docling's inner workings, check out the Docling Technical Report.

Contributing

Please read Contributing to Docling for details.

References

If you use Docling in your projects, please consider citing the following:

@techreport{Docling,
  author = {Deep Search Team},
  month = {8},
  title = {Docling Technical Report},
  url = {https://arxiv.org/abs/2408.09869},
  eprint = {2408.09869},
  doi = {10.48550/arXiv.2408.09869},
  version = {1.0.0},
  year = {2024}
}

License

The Docling codebase is under MIT license. For individual model usage, please refer to the model licenses found in the original packages.

IBM ❤️ Open Source AI

Docling has been brought to you by IBM.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

docling-2.5.2.tar.gz (65.4 kB view details)

Uploaded Source

Built Distribution

docling-2.5.2-py3-none-any.whl (84.4 kB view details)

Uploaded Python 3

File details

Details for the file docling-2.5.2.tar.gz.

File metadata

  • Download URL: docling-2.5.2.tar.gz
  • Upload date:
  • Size: 65.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.10.12 Linux/6.5.0-1025-azure

File hashes

Hashes for docling-2.5.2.tar.gz
Algorithm Hash digest
SHA256 2850eda7269865e66bc81fc3496949e6edc1413cba051e61f107b744ef4cebbe
MD5 c872b6402f551d64d63d0c341d8e4ce0
BLAKE2b-256 50bbcd997f4d84b3c59bf97345c79251f9681ad0eec5a040b162a05bf96f4316

See more details on using hashes here.

Provenance

File details

Details for the file docling-2.5.2-py3-none-any.whl.

File metadata

  • Download URL: docling-2.5.2-py3-none-any.whl
  • Upload date:
  • Size: 84.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.10.12 Linux/6.5.0-1025-azure

File hashes

Hashes for docling-2.5.2-py3-none-any.whl
Algorithm Hash digest
SHA256 0d4d1e57c0f2e98fd150a3444cd6f8a6794de952d2336ba1cbbf68096827e4b7
MD5 838213a93d61cac1ac20b9304a21301f
BLAKE2b-256 b5f0ea642a2247c3fe59e86bcd7425bc13f5b85b0490ebbc384692b7dfa5d196

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page