Skip to main content

Documents and large language models.

Project description

pypi python Build Status codecov


Logo

Docprompt

Document AI, powered by LLM's
Explore the docs »

· Report Bug · Request Feature

About

Docprompt is a library for Document AI. It aims to make enterprise-level document analysis easy thanks to the zero-shot capability of large language models.

Supercharged Document Analysis

  • Common utilities for interacting with PDFs
    • PDF loading and serialization
    • PDF byte compression using Ghostscript :ghost:
    • Fast rasterization :fire: :rocket:
    • Page splitting, re-export with PDFium
    • Document Search, powered by Rust :fire:
  • Support for most OCR providers with batched inference
    • Google :white_check_mark:
    • Azure Document Intelligence :red_circle:
    • Amazon Textract :red_circle:
    • Tesseract :red_circle:
  • Prompt Garden for common document analysis tasks zero-shot, including:
    • Table Extraction
    • Page Classification
    • Segmentation
    • Key-value extraction

Documents and large language models

Features

  • Representations for common document layout types - TextBlock, BoundingBox, etc
  • Generic implementations of OCR providers
  • Document Search powered by Rust and R-trees :fire:

Installation

Use the package manager pip to install Docprompt.

pip install docprompt

With an OCR provider

pip install "docprompt[google]

With search support

pip install "docprompt[search]"

Usage

Simple Operations

from docprompt import load_document

# Load a document
document = load_document("path/to/my.pdf")

# Rasterize a single page using Ghostscript
page_number = 5
rastered = document.rasterize_page(page_number, dpi=120)

# Split a pdf based on a page range
document_2 = document.split(start=125, stop=130)

Performing OCR

from docprompt import load_document, DocumentNode
from docprompt.tasks.ocr.gcp import GoogleOcrProvider

provider = GoogleOcrProvider.from_service_account_file(
  project_id=my_project_id,
  processor_id=my_processor_id,
  service_account_file=path_to_service_file
)

document = load_document("path/to/my.pdf")

# A container holds derived data for a document, like OCR or classification results
document_node = DocumentNode.from_document(document)

provider.process_document_node(document_node) # Caches results on the document_node

document_node[0].ocr_result # Access OCR results

Document Search

When a large language model returns a result, we might want to highlight that result for our users. However, language models return results as text, while what we need to show our users requires a page number and a bounding box.

After extracting text from a PDF, we can support this pattern using DocumentProvenanceLocator, which lives on a DocumentNode

from docprompt import load_document, DocumentNode
from docprompt.tasks.ocr.gcp import GoogleOcrProvider

provider = GoogleOcrProvider.from_service_account_file(
  project_id=my_project_id,
  processor_id=my_processor_id,
  service_account_file=path_to_service_file
)

document = load_document("path/to/my.pdf")

# A container holds derived data for a document, like OCR or classification results
document_node = DocumentNode.from_document(document)

provider.process_document_node(document_node) # Caches results on the document_node

# With OCR results available, we can now instantiate a locator and search through documents.

document_node.locator.search("John Doe") # This will return a list of all terms across the document that contain "John Doe"
document_node.locator.search("Jane Doe", page_number=4) # Just return results a list of matching results from page 4

This functionality uses a combination of rtree and the Rust library tantivy, allowing you to perform thousands of searches in seconds :fire: :rocket:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

docprompt-0.2.6.tar.gz (297.2 kB view details)

Uploaded Source

Built Distribution

docprompt-0.2.6-py3-none-any.whl (33.6 kB view details)

Uploaded Python 3

File details

Details for the file docprompt-0.2.6.tar.gz.

File metadata

  • Download URL: docprompt-0.2.6.tar.gz
  • Upload date:
  • Size: 297.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.6.1 CPython/3.10.12 Linux/6.5.0-27-generic

File hashes

Hashes for docprompt-0.2.6.tar.gz
Algorithm Hash digest
SHA256 e54d70f56a98b488a9b5c8663bde2bda798c518597bd41cf241422668baa0ed5
MD5 0b2d9ea1d3f25fb02f437bfe84cb8754
BLAKE2b-256 8e35ba92acb7f407bd89003915a864649febf14a19e766d6da6f7a803b276a1d

See more details on using hashes here.

File details

Details for the file docprompt-0.2.6-py3-none-any.whl.

File metadata

  • Download URL: docprompt-0.2.6-py3-none-any.whl
  • Upload date:
  • Size: 33.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.6.1 CPython/3.10.12 Linux/6.5.0-27-generic

File hashes

Hashes for docprompt-0.2.6-py3-none-any.whl
Algorithm Hash digest
SHA256 279deed6d1641b13157c4a5639f14cb41a26281aef6b6931bd911fd4e2ca9a8f
MD5 413e12befe2e3928e42f5c1e2073532d
BLAKE2b-256 f29e46421dccbf197ad2e298a9aa922fb638dc5568a3480335f6486a8b352cf2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page