Skip to main content

Documents and large language models.

Project description

pypi python Build Status codecov


Logo

Docprompt

Document AI, powered by LLM's
Explore the docs »

· Report Bug · Request Feature

About

Docprompt is a library for Document AI. It aims to make enterprise-level document analysis easy thanks to the zero-shot capability of large language models.

Supercharged Document Analysis

  • Common utilities for interacting with PDFs
    • PDF loading and serialization
    • PDF byte compression using Ghostscript :ghost:
    • Fast rasterization :fire: :rocket:
    • Page splitting, re-export with PDFium
    • Document Search, powered by Rust :fire:
  • Support for most OCR providers with batched inference
    • Google :white_check_mark:
    • Azure Document Intelligence :red_circle:
    • Amazon Textract :red_circle:
    • Tesseract :red_circle:
  • Prompt Garden for common document analysis tasks zero-shot, including:
    • Table Extraction
    • Page Classification
    • Segmentation
    • Key-value extraction

Documents and large language models

Features

  • Representations for common document layout types - TextBlock, BoundingBox, etc
  • Generic implementations of OCR providers
  • Document Search powered by Rust and R-trees :fire:

Installation

Use the package manager pip to install Docprompt.

pip install docprompt

With an OCR provider

pip install "docprompt[google]

With search support

pip install "docprompt[search]"

Usage

Simple Operations

from docprompt import load_document

# Load a document
document = load_document("path/to/my.pdf")

# Rasterize a single page using Ghostscript
page_number = 5
rastered = document.rasterize_page(page_number, dpi=120)

# Split a pdf based on a page range
document_2 = document.split(start=125, stop=130)

Performing OCR

from docprompt import load_document, DocumentNode
from docprompt.tasks.ocr.gcp import GoogleOcrProvider

provider = GoogleOcrProvider.from_service_account_file(
  project_id=my_project_id,
  processor_id=my_processor_id,
  service_account_file=path_to_service_file
)

document = load_document("path/to/my.pdf")

# A container holds derived data for a document, like OCR or classification results
document_node = DocumentNode.from_document(document)

provider.process_document_node(document_node) # Caches results on the document_node

document_node[0].ocr_result # Access OCR results

Document Search

When a large language model returns a result, we might want to highlight that result for our users. However, language models return results as text, while what we need to show our users requires a page number and a bounding box.

After extracting text from a PDF, we can support this pattern using DocumentProvenanceLocator, which lives on a DocumentNode

from docprompt import load_document, DocumentNode
from docprompt.tasks.ocr.gcp import GoogleOcrProvider

provider = GoogleOcrProvider.from_service_account_file(
  project_id=my_project_id,
  processor_id=my_processor_id,
  service_account_file=path_to_service_file
)

document = load_document("path/to/my.pdf")

# A container holds derived data for a document, like OCR or classification results
document_node = DocumentNode.from_document(document)

provider.process_document_node(document_node) # Caches results on the document_node

# With OCR results available, we can now instantiate a locator and search through documents.

document_node.locator.search("John Doe") # This will return a list of all terms across the document that contain "John Doe"
document_node.locator.search("Jane Doe", page_number=4) # Just return results a list of matching results from page 4

This functionality uses a combination of rtree and the Rust library tantivy, allowing you to perform thousands of searches in seconds :fire: :rocket:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

docprompt-0.2.8.tar.gz (298.4 kB view details)

Uploaded Source

Built Distribution

docprompt-0.2.8-py3-none-any.whl (35.1 kB view details)

Uploaded Python 3

File details

Details for the file docprompt-0.2.8.tar.gz.

File metadata

  • Download URL: docprompt-0.2.8.tar.gz
  • Upload date:
  • Size: 298.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.6.1 CPython/3.10.12 Linux/6.5.0-27-generic

File hashes

Hashes for docprompt-0.2.8.tar.gz
Algorithm Hash digest
SHA256 962e813626c50ba5208afdcc430a5c0441c8b4a9eaa20585524bac3d604a7be3
MD5 1c8c711e1388cd5da177d23e002e98b1
BLAKE2b-256 d0a289c31b328efee618185ff850c44a8963cc162678f5ed62e5127feb0977cc

See more details on using hashes here.

File details

Details for the file docprompt-0.2.8-py3-none-any.whl.

File metadata

  • Download URL: docprompt-0.2.8-py3-none-any.whl
  • Upload date:
  • Size: 35.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.6.1 CPython/3.10.12 Linux/6.5.0-27-generic

File hashes

Hashes for docprompt-0.2.8-py3-none-any.whl
Algorithm Hash digest
SHA256 25f7dbea8c95fae60ee46b90005632c4109d8ba73ecf3aa3ac30586d2072dbfe
MD5 eb23276c47e5d29ee2b7d4ef441db0cd
BLAKE2b-256 8a2601e14fcdce5dc5b6b966fe473947181e7a3dd02d58529afb3dfe9cbc0fc6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page