Skip to main content

Documents and large language models.

Project description

pypi python Build Status codecov pdm-managed


Logo

Docprompt

Document AI, powered by LLM's
Explore the docs »

· Report Bug · Request Feature

About

Docprompt is a library for Document AI. It aims to make enterprise-level document analysis easy thanks to the zero-shot capability of large language models.

Supercharged Document Analysis

  • Common utilities for interacting with PDFs
    • PDF loading and serialization
    • PDF byte compression using Ghostscript :ghost:
    • Fast rasterization :fire: :rocket:
    • Page splitting, re-export with PDFium
    • Document Search, powered by Rust :fire:
  • Support for most OCR providers with batched inference
    • Google :white_check_mark:
    • Azure Document Intelligence :red_circle:
    • Amazon Textract :red_circle:
    • Tesseract :red_circle:
  • Prompt Garden for common document analysis tasks zero-shot, including:
    • Table Extraction
    • Page Classification
    • Segmentation
    • Key-value extraction

Documents and large language models

Features

  • Representations for common document layout types - TextBlock, BoundingBox, etc
  • Generic implementations of OCR providers
  • Document Search powered by Rust and R-trees :fire:

Installation

Use the package manager pip to install Docprompt.

pip install docprompt

With an OCR provider

pip install "docprompt[google]

With search support

pip install "docprompt[search]"

Usage

Simple Operations

from docprompt import load_document

# Load a document
document = load_document("path/to/my.pdf")

# Rasterize a single page using Ghostscript
page_number = 5
rastered = document.rasterize_page(page_number, dpi=120)

# Split a pdf based on a page range
document_2 = document.split(start=125, stop=130)

Performing OCR

from docprompt import load_document, DocumentNode
from docprompt.tasks.ocr.gcp import GoogleOcrProvider

provider = GoogleOcrProvider.from_service_account_file(
  project_id=my_project_id,
  processor_id=my_processor_id,
  service_account_file=path_to_service_file
)

document = load_document("path/to/my.pdf")

# A container holds derived data for a document, like OCR or classification results
document_node = DocumentNode.from_document(document)

provider.process_document_node(document_node) # Caches results on the document_node

document_node[0].ocr_result # Access OCR results

Document Search

When a large language model returns a result, we might want to highlight that result for our users. However, language models return results as text, while what we need to show our users requires a page number and a bounding box.

After extracting text from a PDF, we can support this pattern using DocumentProvenanceLocator, which lives on a DocumentNode

from docprompt import load_document, DocumentNode
from docprompt.tasks.ocr.gcp import GoogleOcrProvider

provider = GoogleOcrProvider.from_service_account_file(
  project_id=my_project_id,
  processor_id=my_processor_id,
  service_account_file=path_to_service_file
)

document = load_document("path/to/my.pdf")

# A container holds derived data for a document, like OCR or classification results
document_node = DocumentNode.from_document(document)

provider.process_document_node(document_node) # Caches results on the document_node

# With OCR results available, we can now instantiate a locator and search through documents.

document_node.locator.search("John Doe") # This will return a list of all terms across the document that contain "John Doe"
document_node.locator.search("Jane Doe", page_number=4) # Just return results a list of matching results from page 4

This functionality uses a combination of rtree and the Rust library tantivy, allowing you to perform thousands of searches in seconds :fire: :rocket:

trackgit-views

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

docprompt-0.6.0.tar.gz (19.7 MB view details)

Uploaded Source

Built Distribution

docprompt-0.6.0-py3-none-any.whl (13.6 MB view details)

Uploaded Python 3

File details

Details for the file docprompt-0.6.0.tar.gz.

File metadata

  • Download URL: docprompt-0.6.0.tar.gz
  • Upload date:
  • Size: 19.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: pdm/2.15.1 CPython/3.10.12 Linux/6.5.0-35-generic

File hashes

Hashes for docprompt-0.6.0.tar.gz
Algorithm Hash digest
SHA256 7f2df3326eb48f250cb4a5e2b22537947718dfcf6efea014288d23635d5c6318
MD5 87a5ed8700c4f79fd6d004e415ae7b6d
BLAKE2b-256 678bf76ab6ec466c0a3d8d2933ad006b172ca5acf31921fbf17ec8f8730f0583

See more details on using hashes here.

File details

Details for the file docprompt-0.6.0-py3-none-any.whl.

File metadata

  • Download URL: docprompt-0.6.0-py3-none-any.whl
  • Upload date:
  • Size: 13.6 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: pdm/2.15.1 CPython/3.10.12 Linux/6.5.0-35-generic

File hashes

Hashes for docprompt-0.6.0-py3-none-any.whl
Algorithm Hash digest
SHA256 58b436c196e4ac99343890d91e631291958eec42676920b63e2cff6385bfc4a1
MD5 8f2886a6a858204e17600d5a86b393c2
BLAKE2b-256 0d35b168e5a916456d83212a1c38dea78aa5ab1771b8da2d523d84263916c3b6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page