Skip to main content

Documents and large language models.

Project description

pypi python Build Status codecov pdm-managed


Logo

Docprompt

Document AI, powered by LLM's
Explore the docs »

· Report Bug · Request Feature

About

Docprompt is a library for Document AI. It aims to make enterprise-level document analysis easy thanks to the zero-shot capability of large language models.

Supercharged Document Analysis

  • Common utilities for interacting with PDFs
    • PDF loading and serialization
    • PDF byte compression using Ghostscript :ghost:
    • Fast rasterization :fire: :rocket:
    • Page splitting, re-export with PDFium
    • Document Search, powered by Rust :fire:
  • Support for most OCR providers with batched inference
    • Google :white_check_mark:
    • Amazon Textract :white_check_mark:
    • Tesseract :white_check_mark:
    • Azure Document Intelligence :red_circle:
  • Prompt Garden for common document analysis tasks zero-shot, including:
    • Markerization (Pdf2Markdown)
    • Table Extraction
    • Page Classification
    • Key-value extraction (Coming soon)
    • Segmentation (Coming soon)

Documents and large language models

Features

  • Representations for common document layout types - TextBlock, BoundingBox, etc
  • Generic implementations of OCR providers
  • Document Search powered by Rust and R-trees :fire:
  • Table Extraction, Page Classification, PDF2Markdown

Installation

Use the package manager pip to install Docprompt.

pip install docprompt

With an OCR provider

pip install "docprompt[google]

With search support

pip install "docprompt[search]"

Usage

Simple Operations

from docprompt import load_document

# Load a document
document = load_document("path/to/my.pdf")

# Rasterize a single page using Ghostscript
page_number = 5
rastered = document.rasterize_page(page_number, dpi=120)

# Split a pdf based on a page range
document_2 = document.split(start=125, stop=130)

Converting a PDF to markdown

Coverting documents into markdown is a great way to prepare documents for downstream chunking or ingestion into a RAG system.

from docprompt import load_document_node
from docprompt.tasks.markerize import AnthropicMarkerizeProvider

document_node = load_document_node("path/to/my.pdf")
markerize_provider = AnthropicMarkerizeProvider()

markerized_document = markerize_provider.process_document_node(document_node)

Extracting Tables

Extract tables with SOTA speed and accuracy.

from docprompt import load_document_node
from docprompt.tasks.table_extraction import AnthropicTableExtractionProvider

document_node = load_document_node("path/to/my.pdf")
table_extraction_provider = AnthropicTableExtractionProvider()

extracted_tables = table_extraction_provider.process_document_node(document_node)

Performing OCR

from docprompt import load_document, DocumentNode
from docprompt.tasks.ocr.gcp import GoogleOcrProvider

provider = GoogleOcrProvider.from_service_account_file(
  project_id=my_project_id,
  processor_id=my_processor_id,
  service_account_file=path_to_service_file
)

document = load_document("path/to/my.pdf")

# A container holds derived data for a document, like OCR or classification results
document_node = DocumentNode.from_document(document)

provider.process_document_node(document_node) # Caches results on the document_node

document_node[0].ocr_result # Access OCR results

Document Search

When a large language model returns a result, we might want to highlight that result for our users. However, language models return results as text, while what we need to show our users requires a page number and a bounding box.

After extracting text from a PDF, we can support this pattern using DocumentProvenanceLocator, which lives on a DocumentNode

from docprompt import load_document, DocumentNode
from docprompt.tasks.ocr.gcp import GoogleOcrProvider

provider = GoogleOcrProvider.from_service_account_file(
  project_id=my_project_id,
  processor_id=my_processor_id,
  service_account_file=path_to_service_file
)

document = load_document("path/to/my.pdf")

# A container holds derived data for a document, like OCR or classification results
document_node = DocumentNode.from_document(document)

provider.process_document_node(document_node) # Caches results on the document_node

# With OCR results available, we can now instantiate a locator and search through documents.

document_node.locator.search("John Doe") # This will return a list of all terms across the document that contain "John Doe"
document_node.locator.search("Jane Doe", page_number=4) # Just return results a list of matching results from page 4

This functionality uses a combination of rtree and the Rust library tantivy, allowing you to perform thousands of searches in seconds :fire: :rocket:

trackgit-views

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

docprompt-0.8.0.tar.gz (19.7 MB view details)

Uploaded Source

Built Distribution

docprompt-0.8.0-py3-none-any.whl (13.6 MB view details)

Uploaded Python 3

File details

Details for the file docprompt-0.8.0.tar.gz.

File metadata

  • Download URL: docprompt-0.8.0.tar.gz
  • Upload date:
  • Size: 19.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: pdm/2.16.1 CPython/3.10.12 Linux/6.5.0-41-generic

File hashes

Hashes for docprompt-0.8.0.tar.gz
Algorithm Hash digest
SHA256 b10a3599c1751b4aba005aaff5d56ab5b30389df43dccf20e53135e99d96dcbf
MD5 2157a35ba0ce20a018a4c69dbf56372d
BLAKE2b-256 6bcc6258c4513459831f8b688c6187324119cc51d421f6820acfe23b7b958414

See more details on using hashes here.

File details

Details for the file docprompt-0.8.0-py3-none-any.whl.

File metadata

  • Download URL: docprompt-0.8.0-py3-none-any.whl
  • Upload date:
  • Size: 13.6 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: pdm/2.16.1 CPython/3.10.12 Linux/6.5.0-41-generic

File hashes

Hashes for docprompt-0.8.0-py3-none-any.whl
Algorithm Hash digest
SHA256 75ef4c4092d6116d1f2ad886cb5975ea5f69e49633d85eb1e41427d4270a47a9
MD5 4c9d8f713b788c2acdd06098fdb52206
BLAKE2b-256 32bc491e05c87cada808c68d600048725ef97f7b563829391dd9c3b0ffcf7835

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page