Skip to main content

Re-implementation of DOLG paper in torch and tensorflow with converted checkpoints

Project description

DOLG

Re-implementation (Non Official) of the paper DOLG: Single-Stage Image Retrieval with Deep Orthogonal Fusion of Local and Global Features accepted at ICCV 2021. paper

The pytorch checkpoint has been converted into tensorflow format (.h5) from this repository : https://github.com/feymanpriv/DOLG (Official)

Pipeline

Image

Installation

pip install opencv-python==4.5.5.64

pip install huggingface-hub

to install dolg :

pip install dolg OR pip install -e .

Inference

To do some inference on single sample, you can use python script in examples/ folder or use as follows:

import dolg
from dolg.utils.extraction import process

depth = 50

# for pytorch

import torch
from dolg.model_dolg_pt import DOLG, ResNet

backbone = ResNet(depth=depth, num_groups=1, width_per_group=64, bn_eps=1e-5, 
             bn_mom=0.1, trans_fun="bottleneck_transform")
model = DOLG(backbone, s4_dim=2048, s3_dim=1024, s2_dim=512, head_reduction_dim=512,
             with_ma=False, num_classes=None, pretrained=f"r{depth}")
img = process("image.jpg", "", mode="pt")

with torch.no_grad():
    output = model(img)
print(output)

# for tensorflow

import tensorflow as tf
from dolg.model_dolg_tf2 import DOLG, ResNet


backbone = ResNet(depth=depth, num_groups=1, width_per_group=64, bn_eps=1e-5, 
             bn_mom=0.1, trans_fun="bottleneck_transform", name="globalmodel")
model = DOLG(backbone, s4_dim=2048, s3_dim=1024, s2_dim=512, head_reduction_dim=512,
             with_ma=False, num_classes=None, pretrained=f"r{depth}")
img = process("image.jpg", "", mode="tf")

output = model.predict(img)
print(output)

Data

The model has been trained on google landmark v2. You can find the dataset on the official repository : https://github.com/cvdfoundation/google-landmark .

Citation :

@misc{yang2021dolg,
      title={DOLG: Single-Stage Image Retrieval with Deep Orthogonal Fusion of Local and Global Features}, 
      author={Min Yang and Dongliang He and Miao Fan and Baorong Shi and Xuetong Xue and Fu Li and Errui Ding and Jizhou Huang},
      year={2021},
      eprint={2108.02927},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}


@misc{https://doi.org/10.48550/arxiv.2004.01804,
  doi = {10.48550/ARXIV.2004.01804},
  
  url = {https://arxiv.org/abs/2004.01804},
  
  author = {Weyand, Tobias and Araujo, Andre and Cao, Bingyi and Sim, Jack},
  
  keywords = {Computer Vision and Pattern Recognition (cs.CV), FOS: Computer and information sciences, FOS: Computer and information sciences},
  
  title = {Google Landmarks Dataset v2 -- A Large-Scale Benchmark for Instance-Level Recognition and Retrieval},

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dolg-0.1.4.tar.gz (15.5 kB view hashes)

Uploaded Source

Built Distribution

dolg-0.1.4-py3-none-any.whl (18.4 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page