Skip to main content

Save and load multi-assay experiments in the dolomite framework!

Project description

Project generated with PyScaffold PyPI-Server Unit tests

Save and load MultiAssayExperiments in Python

Introduction

The dolomite-mae package is the Python counterpart to the alabaster.mae R package, providing methods for saving/reading MultiAssayExperiment objects within the dolomite framework. All components of the MultiAssayExperiment - column_data, sample map and experiments - are saved to their respective file representations, which can be loaded in a new R/Python environment for cross-language analyses.

Quick start

Let's mock up a MultiAssayExperiment:

from multiassayexperiment import MultiAssayExperiment
from singlecellexperiment import SingleCellExperiment
from summarizedexperiment import SummarizedExperiment
import biocframe
import numpy

x = numpy.random.rand(1000, 200)
x2 = (numpy.random.rand(1000, 200) * 10).astype(numpy.int32)

sce = SingleCellExperiment(
     {"logcounts": x, "counts": x2},
     main_experiment_name="aaron's secret modality",
     row_data=biocframe.BiocFrame(
          {"foo": numpy.random.rand(1000), "bar": numpy.random.rand(1000)},
          row_names=["gene_sce_" + str(i) for i in range(1000)],
     ),
     column_data=biocframe.BiocFrame(
          {"whee": numpy.random.rand(200), "stuff": numpy.random.rand(200)},
          row_names=["cell_sce" + str(i) for i in range(200)],
     ),
)

se = SummarizedExperiment(
     {"counts": numpy.random.rand(100, 200)},
     row_data=biocframe.BiocFrame(
          {"foo": numpy.random.rand(100), "bar": numpy.random.rand(100)},
          row_names=["gene_se_" + str(i) for i in range(100)],
     ),
     column_data=biocframe.BiocFrame(
          {"whee": numpy.random.rand(200), "stuff": numpy.random.rand(200)},
          row_names=["cell_se" + str(i) for i in range(200)],
     ),
)

mae = MultiAssayExperiment(experiments={"jay_expt": sce, "aarons_expt": se})

Now we can save it:

from dolomite_base import save_object
import dolomite_se
import os
from tempfile import mkdtemp

path = os.path.join(mkdtemp(), "test")
save_object(se, path)

And load it again, e,g., in a new session:

from dolomite_base import read_object

roundtrip = read_object(path)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dolomite_mae-0.1.1.tar.gz (23.2 kB view details)

Uploaded Source

Built Distribution

dolomite_mae-0.1.1-py3-none-any.whl (6.7 kB view details)

Uploaded Python 3

File details

Details for the file dolomite_mae-0.1.1.tar.gz.

File metadata

  • Download URL: dolomite_mae-0.1.1.tar.gz
  • Upload date:
  • Size: 23.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.19

File hashes

Hashes for dolomite_mae-0.1.1.tar.gz
Algorithm Hash digest
SHA256 fd0694d9e794666c9dc7dccdefe182120cc5da20bd67c8c10d5e1fc2bcf3899f
MD5 6e684de18a81fd6e7b38174140398d8a
BLAKE2b-256 a783722eaa1ecd731e118fa98618f57240876099040930044b8454708d8b8521

See more details on using hashes here.

File details

Details for the file dolomite_mae-0.1.1-py3-none-any.whl.

File metadata

File hashes

Hashes for dolomite_mae-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 47a81137eb475d0b4b3831d630e2be2374c4fdd35585bd3bde87870efd7202d4
MD5 081ec183b47f0c36c67ae81fffc0acda
BLAKE2b-256 89e6897feb4b0848a356e5cca5b3aaff4d9d273ad518dc551a03c440dc0094d7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page