Skip to main content

Save and load matrices in the dolomite framework

Project description

Project generated with PyScaffold PyPI-Server Monthly Downloads Unit tests

Read and save matrices in Python

Introduction

The dolomite-matrix package is the Python counterpart to the alabaster.matrix R package, providing methods for saving/reading arrays and matrices within the dolomite framework. Dense arrays are stored in the usual HDF5 dataset, while sparse matrices are saved inside a HDF5 file in compressed sparse format.

Quick start

Let's save a dense matrix to a HDF5 file with some accompanying metadata:

import numpy
x = numpy.random.rand(1000, 200) 

import os
import tempfile
dir = os.path.join(tempfile.mkdtemp(), "whee")

import dolomite_base
import dolomite_matrix
dolomite_base.save_object(x, dir)

Now we can transfer the directory and reload the matrix in a new session. This constructs a HDF5-backed dense array that can be used for block processing or realized into the usual NumPy array.

import dolomite_base
obj = dolomite_base.read_object(dir)
## <1000 x 200> ReloadedArray object of type 'float64'
## [[0.58444226, 0.82595149, 0.7214525 , ..., 0.32493652, 0.58206044,
##   0.73770346],
##  [0.96398317, 0.73200292, 0.16410134, ..., 0.31626547, 0.11499628,
##   0.19768697],
##  [0.82350911, 0.48012452, 0.65221052, ..., 0.94989611, 0.15422992,
##   0.77173718],
##  ...,
##  [0.71715436, 0.19266116, 0.52316388, ..., 0.23104537, 0.935654  ,
##   0.51663007],
##  [0.38585049, 0.26709808, 0.70358993, ..., 0.91822795, 0.66144925,
##   0.42465112],
##  [0.08535589, 0.00144712, 0.51411921, ..., 0.84546122, 0.35001404,
##   0.53644868]]

Sparse matrices

We can also save and load a sparse matrix from a HDF5 file:

import scipy 
import numpy
x = scipy.sparse.random(1000, 200, 0.2, dtype=numpy.int16, format="csc")

import os
import tempfile
dir = os.path.join(tempfile.mkdtemp(), "stuff")

import dolomite_base
import dolomite_matrix
dolomite_base.save_object(x, dir)

And again, loading it back in a new session. This constructs a HDF5-backed sparse array that can be used for block processing or realized into the usual NumPy array.

import dolomite_base
obj = dolomite_base.read_object(dir)
## <1000 x 200> sparse ReloadedArray object of type 'int16'
## [[     0,      0, -28638, ...,      0,      0,  26194],
##  [     0,      0,      0, ...,      0, -30829,      0],
##  [     0,      0,      0, ...,      0,      0,      0],
##  ...,
##  [ 10895,      0,      0, ...,      0,      0,      0],
##  [     0,  32539,      0, ...,      0,   2780, -12106],
##  [     0,      0,      0, ...,   1452,      0, -26314]]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dolomite-matrix-0.1.0a3.tar.gz (37.5 kB view details)

Uploaded Source

Built Distribution

dolomite_matrix-0.1.0a3-py3-none-any.whl (21.3 kB view details)

Uploaded Python 3

File details

Details for the file dolomite-matrix-0.1.0a3.tar.gz.

File metadata

  • Download URL: dolomite-matrix-0.1.0a3.tar.gz
  • Upload date:
  • Size: 37.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for dolomite-matrix-0.1.0a3.tar.gz
Algorithm Hash digest
SHA256 1fe0727a9897f38c83b4a6b4b22e4ff8bb6683b1021eeb2b2e2fd5fe87c01474
MD5 8b9277d19e75db3ab3c8fa32d2416908
BLAKE2b-256 0dfee850b6155e56118e978726334eea60b6bbf95448b370981f78309937d745

See more details on using hashes here.

File details

Details for the file dolomite_matrix-0.1.0a3-py3-none-any.whl.

File metadata

File hashes

Hashes for dolomite_matrix-0.1.0a3-py3-none-any.whl
Algorithm Hash digest
SHA256 455725ae1443e74c1404ea6d9a2504f57c4199848ff43ab30710447a803456e2
MD5 6c9898d8459880519ea9c43974469548
BLAKE2b-256 c7d3488b016f829d88b59602b6af9d7f9db7653ec54dab15d1ba240b860dd504

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page