Skip to main content

Save and load summarized experiments in the dolomite framework!

Project description

Project generated with PyScaffold

Save and load SummarizedExperiments in Python

Introduction

The dolomite-se package is the Python counterpart to the alabaster.se R package, providing methods for saving/reading SummarizedExperiment objects within the dolomite framework. All components of the SummarizedExperiment - assays, row data and column data - are saved to their respective file representations, which can be loaded in a new R/Python environment for cross-language analyses.

Quick start

Let's mock up a SummarizedExperiment:

import summarizedexperiment
import biocframe
import numpy

se = summarizedexperiment.SummarizedExperiment(
    assays={ "counts": numpy.random.rand(1000, 200) },
    row_data=biocframe.BiocFrame(
        { "foo": numpy.random.rand(1000) }, 
        row_names = ["gene" + str(i) for i in range(1000)]
    ),
    col_data=biocframe.BiocFrame(
        { "whee": numpy.random.rand(200) },
        row_names = ["cell" + str(i) for i in range(200)]
    )
)

Now we can save it:

from dolomite_base import stage_object, write_metadata
import dolomite_se

dir = "test"
meta = stage_object(se, dir, "mydata")
write_metadata(meta, dir)
print(meta["path"])
## mydata/experiment.json

And load it again, e,g., in a new session:

from dolomite_base import acquire_metadata, load_object

meta = acquire_metadata("test", "mydata/experiment.json")
reloaded = load_object(meta, dir)
## Class SummarizedExperiment with 1000 features and 200 samples
##   assays: ['counts']
##   row_data: ['foo']
##   col_data: ['whee']

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dolomite-se-0.1.0a0.tar.gz (22.9 kB view details)

Uploaded Source

Built Distribution

dolomite_se-0.1.0a0-py3-none-any.whl (8.4 kB view details)

Uploaded Python 3

File details

Details for the file dolomite-se-0.1.0a0.tar.gz.

File metadata

  • Download URL: dolomite-se-0.1.0a0.tar.gz
  • Upload date:
  • Size: 22.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for dolomite-se-0.1.0a0.tar.gz
Algorithm Hash digest
SHA256 b7e49a695489188cd0fa76e26dd68844026b62e128cdb63cd5019f847f1d63e9
MD5 b5a4193b9e40b54236c07f5045b50f6b
BLAKE2b-256 1c16cf9459a97e76b624697aba6ba0060e7b4f319a8e80779e92e645bda2016d

See more details on using hashes here.

File details

Details for the file dolomite_se-0.1.0a0-py3-none-any.whl.

File metadata

File hashes

Hashes for dolomite_se-0.1.0a0-py3-none-any.whl
Algorithm Hash digest
SHA256 435f1a5c20d0cc5f7be295f9ce284ae8f61dea05613d28e9ef72842a8ed811de
MD5 b80c1a15ee6de30ce1380de40b11ae6a
BLAKE2b-256 8bc3c8385053a69984a46c43af179a2bf0e7dab08273073451167ee59a521450

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page