Skip to main content

Save and load summarized experiments in the dolomite framework!

Project description

Project generated with PyScaffold

Save and load SummarizedExperiments in Python

Introduction

The dolomite-se package is the Python counterpart to the alabaster.se R package, providing methods for saving/reading SummarizedExperiment objects within the dolomite framework. All components of the SummarizedExperiment - assays, row data and column data - are saved to their respective file representations, which can be loaded in a new R/Python environment for cross-language analyses.

Quick start

Let's mock up a SummarizedExperiment:

import summarizedexperiment
import biocframe
import numpy

se = summarizedexperiment.SummarizedExperiment(
    assays={ "counts": numpy.random.rand(1000, 200) },
    row_data=biocframe.BiocFrame(
        { "foo": numpy.random.rand(1000) }, 
        row_names = ["gene" + str(i) for i in range(1000)]
    ),
    col_data=biocframe.BiocFrame(
        { "whee": numpy.random.rand(200) },
        row_names = ["cell" + str(i) for i in range(200)]
    )
)

Now we can save it:

from dolomite_base import stage_object, write_metadata
import dolomite_se

dir = "test"
meta = stage_object(se, dir, "mydata")
write_metadata(meta, dir)
print(meta["path"])
## mydata/experiment.json

And load it again, e,g., in a new session:

from dolomite_base import acquire_metadata, load_object

meta = acquire_metadata("test", "mydata/experiment.json")
reloaded = load_object(meta, dir)
## Class SummarizedExperiment with 1000 features and 200 samples
##   assays: ['counts']
##   row_data: ['foo']
##   col_data: ['whee']

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dolomite-se-0.1.0a2.tar.gz (22.9 kB view details)

Uploaded Source

Built Distribution

dolomite_se-0.1.0a2-py3-none-any.whl (8.3 kB view details)

Uploaded Python 3

File details

Details for the file dolomite-se-0.1.0a2.tar.gz.

File metadata

  • Download URL: dolomite-se-0.1.0a2.tar.gz
  • Upload date:
  • Size: 22.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for dolomite-se-0.1.0a2.tar.gz
Algorithm Hash digest
SHA256 33697a841566bff5a9556270e1869daf2be3361adb8923e5c6b2ad9f8920e260
MD5 b3954b067ae761fbfe9c9bcc0f981344
BLAKE2b-256 96fcd6a92ec293d6894281fd2250d2b524e4b16a50b36f8c5aa90b62adb93cef

See more details on using hashes here.

File details

Details for the file dolomite_se-0.1.0a2-py3-none-any.whl.

File metadata

File hashes

Hashes for dolomite_se-0.1.0a2-py3-none-any.whl
Algorithm Hash digest
SHA256 a06457cd0068f45d150bb76d7e25a8bd7d3558c82aedc99ec72ddae652334221
MD5 cbd720998f92902e1745beab4ef17a62
BLAKE2b-256 7a58dc3922ec82e19bbf9a2579ba7dd61d57a3676a9f1fe020e7fc8a096a33f1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page