Digtal Organoid On Chips
Project description
DOoC
Usage
Train
# Regression train
from moltx import tokenizers
from dooc import models, datasets, nets
tk = tokenizers.MoltxTokenizer.from_pretrain(models.AdaMRTokenizerConfig.Prediction)
ds = datasets.MutSmiXAttention(tokenizer=tk, device=torch.device('cpu'))
smiles = ["c1cccc1c", "CC[N+](C)(C)Cc1ccccc1Br"]
mutations = [[1, 0, 0, ...], [1, 0, 1, ...]]
# e.g.
# import random
# [random.choice([0, 1]) for _ in range(3008)]
values = [0.85, 0.78]
smiles_src, smiles_tgt, mutations_src, out = ds(smiles, mutations, values)
model = models.MutSmiXAttention()
model.load_pretrained_ckpt('/path/to/drugcell.ckpt', '/path/to/moltx.ckpt')
crt = nn.MSELoss()
optim.zero_grad()
pred = model(smiles_src, smiles_tgt, mutations_src)
loss = crt(pred, out)
loss.backward()
optim.step()
torch.save(model.state_dict(), '/path/to/mutsmixattention.ckpt')
Inference
from dooc import pipelines, models
# dooc
model = models.MutSmiXAttention()
model.load_ckpt('/path/to/mutsmixattention.ckpt')
pipeline = pipelines.MutSmiXAttention()
pipeline([1, 0, 0, ...], "C=CC=CC=C")
# 0.85
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
dooc-0.0.2.tar.gz
(282.3 kB
view details)
Built Distribution
dooc-0.0.2-py3-none-any.whl
(287.4 kB
view details)
File details
Details for the file dooc-0.0.2.tar.gz
.
File metadata
- Download URL: dooc-0.0.2.tar.gz
- Upload date:
- Size: 282.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 40ba254f21396935e3e384eed7f3e6a3e4d4e10c78c8c795340cc6c19d2c0285 |
|
MD5 | fb8558b27af407a70e63f6360b2706f3 |
|
BLAKE2b-256 | 3922ab489a2776ad7d4a0a31fec64631296a2d9ba3df2adc80a83b237cfcc1f8 |
File details
Details for the file dooc-0.0.2-py3-none-any.whl
.
File metadata
- Download URL: dooc-0.0.2-py3-none-any.whl
- Upload date:
- Size: 287.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8d20ea9ecfcc5af20e684de8ea711c017dc1c006b8a79298b7ddbbd9c45ded65 |
|
MD5 | eb065df12e44f034ee903c1ed9127bc4 |
|
BLAKE2b-256 | 41a4888e0b9cb580f34b4a7b05b3cc93856a2c5d4265a221456918d53aa482ba |