Skip to main content

A library that handles everything with 🤗 and supports batching to models in PORORO

Project description

DOOLY 🦕

PORORO에는 아래 세 가지 단점이 존재합니다.

  • 일부 task의 batch화 불가능
  • 내부 tokenize 과정 및 모듈 구조 확인이 어려움
  • fairseq dependency

Dooly는 위 단점 세 가지를 개선한 라이브러리입니다.

  • 모든 task를 batch화하여 inference 가능
  • task별 tokenizer, model을 모듈로 분리하여 출력값 확인 가능
  • 모든 것을 huggingface transformers로 처리

How to use?

아래와 같이 간단하게 사용 가능합니다

  • install
$ pip install dooly
  • how to use
    • PORORO와 동일하게 사용할 수 있습니다.
from dooly import Dooly

ner = Dooly(task="ner", lang="ko")

Supported Tasks

  • Back Translation Data Augmentation
  • Dependency Parsing
  • Machine Reading Comprehension
  • Machine Translation
  • Named Entity Recognition
  • Natural Language Inference
  • Pos Tagging
  • Question Generation
  • Word Embedding
  • Word Sense Disambiguation
  • Zero Shot Topic Classification

Citations

@misc{pororo,
  author       = {Heo, Hoon and Ko, Hyunwoong and Kim, Soohwan and
                  Han, Gunsoo and Park, Jiwoo and Park, Kyubyong},
  title        = {PORORO: Platform Of neuRal mOdels for natuRal language prOcessing},
  howpublished = {\url{https://github.com/kakaobrain/pororo}},
  year         = {2021},
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dooly-0.1.3.tar.gz (64.0 kB view hashes)

Uploaded Source

Built Distribution

dooly-0.1.3-py3-none-any.whl (83.0 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page