Dora Node for object detection with dora YOLOv8
Project description
Dora Node for detecting objects in images using YOLOv8
This node is used to detect objects in images using YOLOv8.
YAML
- id: object_detection
build: pip install ../../node-hub/dora-yolo
path: dora-yolo
inputs:
image: webcam/image
outputs:
- bbox
env:
MODEL: yolov5n.pt
Inputs
image
: Arrow array containing the base image
## Image data
image_data: UInt8Array # Example: pa.array(img.ravel())
metadata = {
"width": 640,
"height": 480,
"encoding": str, # bgr8, rgb8
}
## Example
node.send_output(
image_data, {"width": 640, "height": 480, "encoding": "bgr8"}
)
## Decoding
storage = event["value"]
metadata = event["metadata"]
encoding = metadata["encoding"]
width = metadata["width"]
height = metadata["height"]
if encoding == "bgr8":
channels = 3
storage_type = np.uint8
frame = (
storage.to_numpy()
.astype(storage_type)
.reshape((height, width, channels))
)
Outputs
bbox
: an arrow array containing the bounding boxes, confidence scores, and class names of the detected objects
bbox: {
"bbox": np.array, # flattened array of bounding boxes
"conf": np.array, # flat array of confidence scores
"labels": np.array, # flat array of class names
}
encoded_bbox = pa.array([bbox], {"format": "xyxy"})
decoded_bbox = {
"bbox": encoded_bbox[0]["bbox"].values.to_numpy().reshape(-1, 4),
"conf": encoded_bbox[0]["conf"].values.to_numpy(),
"labels": encoded_bbox[0]["labels"].values.to_numpy(zero_copy_only=False),
}
Example
Check example at examples/python-dataflow
License
This project is licensed under Apache-2.0. Check out NOTICE.md for more information.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
dora_yolo-0.3.7.tar.gz
(2.7 kB
view details)
Built Distribution
File details
Details for the file dora_yolo-0.3.7.tar.gz
.
File metadata
- Download URL: dora_yolo-0.3.7.tar.gz
- Upload date:
- Size: 2.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.8.4 CPython/3.10.15 Linux/6.5.0-1025-azure
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b3539140b0705f5e2d9a3c36a3e35d21f4f7a9adaeea8fb046f878a1272d146e |
|
MD5 | afed1bd50014e0e94c261788619ca6c0 |
|
BLAKE2b-256 | 66c2919c72eebe0786cf67cadca0ce49a8b4f3546d6fe8d37b64b4ce3d5266e3 |
File details
Details for the file dora_yolo-0.3.7-py3-none-any.whl
.
File metadata
- Download URL: dora_yolo-0.3.7-py3-none-any.whl
- Upload date:
- Size: 3.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.8.4 CPython/3.10.15 Linux/6.5.0-1025-azure
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 923240f02ccf2fce346b09159735c9fd06423c92ed0df10fdee2e3c636ca7a91 |
|
MD5 | d2828de912b394b51910c46ac27df4cc |
|
BLAKE2b-256 | dc070592af7ef6d356dcc0f6c668e020571f7dda801d9f58dfda6a7820cd3bd3 |